导读
在人工智能领域,大模型的设计与训练一直是热门话题。细心的朋友可能会发现,大模型的训练通常分为预训练和微调两个阶段。那么,为什么要这样设计呢?今天我们就来聊聊其中的原因。
unsetunset一、什么是预训练和微调?unsetunset
1. 预训练
预训练是指使用海量的未标注数据对模型进行训练,使其学习到通用的知识和模式。这些数据通常来自书籍、文章、网站等多种来源,涵盖了广泛的领域和语言结构。通过预训练,模型能够掌握语言的底层规律,如词汇语义、句法结构,以及不同场景下的通用模式和上下文关系。
2. 微调
微调是指在预训练模型的基础上,使用少量的标注数据对模型进行进一步训练,使其适应特定的任务或领域。这些标注数据通常与目标任务高度相关,例如情感分析、机器翻译、法律文本理解等。通过微调,模型能够更精确地适应特定的场景或任务,从而提高其在该任务上的表现。
这种设计不仅提升了模型的泛化能力,还显著降低了训练成本。
unsetunset一、提升大模型泛化能力unsetunset
1. 什么是泛化能力?
泛化能力是指模型从训练数据中学习到的知识和模式,能够应用到新的数据、任务或环境中的能力。简单来说,就是模型在面对未曾见过的情况时,依然能够做出合理的判断、预测或生成合适内容的能力。
2. 预训练与微调如何提升泛化能力?
-
预训练阶段:预训练阶段使用了多样化的海量语料,如书籍、文章、网站等,这些数据涵盖了广泛的领域和语言结构。模型通过学习这些数据,能够掌握语言的底层规律,如词汇语义、句法结构,以及不同场景下的通用模式和上下文关系。这就像是给模型打下了一个坚实的基础,让它对世界的知识有了广泛的了解。
-
微调阶段:微调阶段则是在预训练的基础上,针对特定的任务或领域进行调整。通过使用与目标任务相关的小规模、高质量标注数据,模型能够更精确地适应特定的场景或任务。这就像是在通用知识的基础上,再进行一些针对性的训练,让模型在特定领域表现得更加出色。
unsetunset三、降低大模型训练成本unsetunset
1. 预训练:一次性高投入,长期复用
预训练阶段虽然需要大量的计算资源和数据,但其成本可以通过以下方式分摊:
-
通用知识学习:预训练模型通过海量数据学习通用特征,这些知识可以迁移到多种任务中,避免了为每个任务从头训练模型的成本。
-
模型复用:预训练模型可以作为一个通用基础模型,供多个任务和开发者使用。例如,Meta的LLama系列、阿里的通义千问等模型被广泛应用于各种下游任务,显著降低了重复训练的成本。
2. 微调:低成本适应特定任务
微调阶段的成本远低于从头训练模型:
-
数据效率:微调通常只需要少量标注数据,可能是预训练数据的千分之一甚至更少,大大减少了数据收集和标注的成本。
-
计算效率:微调只需要调整部分模型参数或少量训练步骤,计算资源需求显著低于预训练。例如,微调一个百亿参数模型可能只需要几小时到几天,而预训练可能需要数周甚至数月。
unsetunset三、总结unsetunset
预训练和微调的两阶段训练方式不仅提升了大模型的泛化能力,还显著提高了模型的实际应用价值。预训练让模型学会了普适性规律,而微调则针对特定需求进一步优化,从而在广泛的任务和领域中实现高效、可靠的表现。这种训练策略是大模型成功的重要原因之一。
通过这种设计,大模型能够在保持通用性的同时,具备强大的特定任务适应能力,真正实现了“广度”与“深度”的结合。
如何学习大模型 AI ?
由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。
但是具体到个人,只能说是:
“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。
这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。
我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。
我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。
第一阶段(10天):初阶应用
该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。
- 大模型 AI 能干什么?
- 大模型是怎样获得「智能」的?
- 用好 AI 的核心心法
- 大模型应用业务架构
- 大模型应用技术架构
- 代码示例:向 GPT-3.5 灌入新知识
- 提示工程的意义和核心思想
- Prompt 典型构成
- 指令调优方法论
- 思维链和思维树
- Prompt 攻击和防范
- …
第二阶段(30天):高阶应用
该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。
- 为什么要做 RAG
- 搭建一个简单的 ChatPDF
- 检索的基础概念
- 什么是向量表示(Embeddings)
- 向量数据库与向量检索
- 基于向量检索的 RAG
- 搭建 RAG 系统的扩展知识
- 混合检索与 RAG-Fusion 简介
- 向量模型本地部署
- …
第三阶段(30天):模型训练
恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。
到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?
- 为什么要做 RAG
- 什么是模型
- 什么是模型训练
- 求解器 & 损失函数简介
- 小实验2:手写一个简单的神经网络并训练它
- 什么是训练/预训练/微调/轻量化微调
- Transformer结构简介
- 轻量化微调
- 实验数据集的构建
- …
第四阶段(20天):商业闭环
对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。
- 硬件选型
- 带你了解全球大模型
- 使用国产大模型服务
- 搭建 OpenAI 代理
- 热身:基于阿里云 PAI 部署 Stable Diffusion
- 在本地计算机运行大模型
- 大模型的私有化部署
- 基于 vLLM 部署大模型
- 案例:如何优雅地在阿里云私有部署开源大模型
- 部署一套开源 LLM 项目
- 内容安全
- 互联网信息服务算法备案
- …
学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。
如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。