现在已经是全民 AI 时代了,咱们程序员更要想办法榨干 AI,把 AI 利用起来。前几天我一时兴起,直播用 2 多个小时的时间,从需求分析开始,带大家完成了一个 AI 海龟汤游戏项目。
代码也给大家开源出来了,供朋友们玩耍和学习:
开源:https://github.com/liyupi/yuhaigui-ai-game
下面简单介绍下这个项目~
AI 海龟汤项目
几个小时就能学完的 AI 原生项目,通过做一个 AI 海龟汤游戏网站,带大家快速实战 AI 项目的开发流程,紧跟时代的前沿。
可能很多朋友没听说过海龟汤,这是一个老少咸宜的小游戏,分为汤面和汤底,主持人讲一个故事(汤面),由玩家通过提问的方式来不断地揭露还原故事的真相(汤底)。
举个例子:有一个人邀请朋友来参加生日聚会,在他吹完蜡烛后,他把在场的所有朋友都弄死了,问为什么?
可以让 AI 代替传统海龟汤的主持人,玩家只需要向 AI 对话,就能够自己进行海龟汤的游戏。
下面这个图就是用 AI 生成的网站,其实还可以再优化优化让它更好看~
通过这个小项目,其实还是能学到不少东西的:
-
学习标准的企业项目开发流程:需求分析 => 方案设计 => 后端开发 + 前端开发 => 测试 => 部署上线(可选)
-
学习如何快速初始化前后端项目
-
学习在程序中接入 AI 大模型
-
学习如何封装自己的 AI 工具类
-
学习如何优化 Prompt
-
学习如何维护对话上下文并传递给 AI
-
学习如何利用 AI 补全代码
-
学习如何纯利用 AI 开发前端网站
接入 AI 并调试优化 Prompt 提示词
技术选型
前端
-
Vue 3:适合快速开发单页面应用
-
Ant Design Vue:主流组件库,兼容 PC 端和移动端响应式
-
Vue Router:前端路由组件
-
Axios:主流的请求库
后端
-
Java + Spring Boot 框架
-
MySQL 数据库
-
MyBatis + MyBatis Plus 框架
-
Hutool 工具类
-
Swagger + Knife4j 接口文档组合
-
AI 大模型接入,此处接入的是目前很火的 DeepSeek
快速初始后端 + 运行接口文档调试接口
业务流程
-
玩家进入页面,点击【开始游戏】,进入聊天室页面
-
进入聊天室页面时,AI 会立刻给出一个招呼语(给出故事汤面)
-
接下来,用户可以和 AI 主持人进行对话
-
用户可以主动结束,也可以由 AI 主动结束游戏
-
用户可以随时查看往期的对话记录
流程如图,这个图也是利用 AI 生成出来的:
如何学习大模型 AI ?
由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。
但是具体到个人,只能说是:
“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。
这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。
我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。
我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。
第一阶段(10天):初阶应用
该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。
- 大模型 AI 能干什么?
- 大模型是怎样获得「智能」的?
- 用好 AI 的核心心法
- 大模型应用业务架构
- 大模型应用技术架构
- 代码示例:向 GPT-3.5 灌入新知识
- 提示工程的意义和核心思想
- Prompt 典型构成
- 指令调优方法论
- 思维链和思维树
- Prompt 攻击和防范
- …
第二阶段(30天):高阶应用
该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。
- 为什么要做 RAG
- 搭建一个简单的 ChatPDF
- 检索的基础概念
- 什么是向量表示(Embeddings)
- 向量数据库与向量检索
- 基于向量检索的 RAG
- 搭建 RAG 系统的扩展知识
- 混合检索与 RAG-Fusion 简介
- 向量模型本地部署
- …
第三阶段(30天):模型训练
恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。
到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?
- 为什么要做 RAG
- 什么是模型
- 什么是模型训练
- 求解器 & 损失函数简介
- 小实验2:手写一个简单的神经网络并训练它
- 什么是训练/预训练/微调/轻量化微调
- Transformer结构简介
- 轻量化微调
- 实验数据集的构建
- …
第四阶段(20天):商业闭环
对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。
- 硬件选型
- 带你了解全球大模型
- 使用国产大模型服务
- 搭建 OpenAI 代理
- 热身:基于阿里云 PAI 部署 Stable Diffusion
- 在本地计算机运行大模型
- 大模型的私有化部署
- 基于 vLLM 部署大模型
- 案例:如何优雅地在阿里云私有部署开源大模型
- 部署一套开源 LLM 项目
- 内容安全
- 互联网信息服务算法备案
- …
学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。
如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。