HedgeAgents: 多智能体量化交易对冲系统,年化收益高达70%,3年累计收益400%

在这里插入图片描述

项目主页:https://hedgeagents.github.io/

论文地址:https://arxiv.org/pdf/2502.13165

摘要

自动交易和算法投资策略在金融市场日益普及,但现有模型在快速下跌和频繁波动时损失高达20%。本文提出了一个名为HedgeAgents的多代理系统,通过“对冲”策略增强系统的稳健性。HedgeAgents由中央基金经理和多个专注于不同金融资产类别的对冲专家组成,利用大型语言模型(LLMs)进行决策。该系统通过三种会议形式进行协调,取得了70%的年化收益和3年内400%的总回报。HedgeAgents的投资经验与人类专家相当。

简介

自动化交易已成为现代金融市场的重要投资策略,利用先进算法实时跟踪市场趋势,提高决策速度和投资收益,同时降低风险。人工智能,特别是大型语言模型(LLMs),在金融交易中提供了显著机会,能够分析大量金融和新闻信息,预测市场变化,并生成财务分析报告。尽管这些模型表现出色,但在应对现实市场波动时仍缺乏稳健性,尤其在“快速下跌”场景中,许多基线模型表现不佳,且缺乏风险管理机制。

图片

本文旨在通过引入“对冲”概念,开发一个稳健的金融交易系统,构建一个多智能体系统,其中LLM作为核心。主要挑战在于对冲智能体的配置和协调,现有的无约束智能体系统(如FinAgent)只能实现次优性能。HedgeAgents是一个多智能体对冲系统,包含基金经理和股票、外汇、比特币等领域的专家。专家负责各自领域,基金经理协调讨论、审查和整合见解。利用大型语言模型(LLM),HedgeAgents积累了类似人类的投资经验,展现出在极端条件下的稳定性。该系统在3年内实现了400%的总回报,年化回报率达到70%。

图片

本研究首次将“对冲”整合进多智能体环境,建立了一个由三位专家和一位经理组成的对冲投资组合。实验结果表明该框架在所有指标上表现优异。

相关工作

量化金融

量化金融结合数学和统计方法,解决复杂金融问题。关键应用包括金融衍生品估值、投资组合优化和市场动态分析。机器学习提升了预测建模能力,增强市场预测准确性和算法交易效率。随着金融市场的发展,定量技术的整合对应对市场不确定性至关重要。

大模型代理

LLM(大型语言模型)在推动通用人工智能(AGI)方面具有重要作用。LLM增强了代理的自主性、反应能力和社交互动能力。代理能够执行复杂任务,如自然语言交互、知识整合、信息记忆、逻辑推理和战略规划。基于LLM的代理系统在金融等领域展现出潜力,提供新颖的解决方案应对复杂挑战。

HedgeAgents

预备知识

目标是优化收益并降低风险,使用对冲策略。利用金融数据(价格和新闻)作为输入。生成并实施交易行动,包括买卖。涉及领域:比特币、股票和外汇。

整体框架

HedgeAgents框架模拟对冲基金架构,优化多资产投资组合的风险对冲。包含:

  • 四个角色:比特币分析师Dave、道琼斯分析师Bob、外汇分析师Emily和对冲基金经理Otto。

  • 三种多代理协调会议:预算分配会议(BAC)、经验分享会议(ESC)、极端市场会议(EMC),用于预算分配、经验总结和紧急行动。

图片

单个代理的定义

单一投资代理模拟人类决策过程,包含23种金融分析工具(如指标分析、加密货币市场分析、风险管理)。行动类型有8种(如买入/卖出/持有),记忆分为三类:基本市场信息记忆、投资反思、一般经验。工作流程包括:记忆检索、决策制定和反思更新。

图片

记忆检索通过总结查询从记忆中检索5个相似案例以增强决策。

决策制定基于经验,通过强化学习优化总回报,使用LLM生成兼容的行动。

图片

图片

反思更新将市场信息和查询存入基本记忆,决策过程中的反思和行动更新到投资反思记忆。

对冲代理的协作

预算分配会议:每30天召开,Dave(比特币)、Bob(股票)、Emily(外汇)向经理Otto报告当前利润和预算期望,Otto整合报告评估未来收益,并通过引入预期总回报、整体投资组合风险和条件预期回撤风险来优化资产配置。

图片

图片

图片

经验分享会议:投资周期结束时,三位对冲代理进行知识积累,每位代理分享典型案例,讨论后将见解存档以增强未来决策。

图片

极端市场会议:在市场波动超过5%或三天累计超过10%时召开,危机代理需展示当前投资组合、危机原因及应对计划,其他代理提供建议以优化应对策略。

图片

图片

实验

数据集

数据集涵盖比特币、外汇和道琼斯成分股,来源于Yahoo Finance和Alpaca News API。时间范围为2015年1月1日至2023年12月31日,包含每日开盘、最高、最低、收盘价、成交量和调整后收盘价。每个资产还包括每日新闻更新和60个标准技术分析指标。

评估指标

比较HedgeAgents与基线的9个金融指标,包括:

  • 2个利润指标:总回报(TR)、年回报率(ARR)。

  • 3个风险调整利润指标:夏普比率(SR)、卡尔玛比率(CR)、索提诺比率(SOR)。

  • 2个风险指标:最大回撤(MDD)、波动率(VOL)。

  • 2个多样性指标:熵(ENT)、有效投注数(ENB)。

实现细节

数据集分为训练集(2015年1月1日至2020年12月31日)和测试集(2021年1月1日至2023年12月31日),测试阶段仅使用历史价格以避免数据泄漏。所有基线模型在相同的强化学习环境中训练和测试。使用Optuna进行基线配置的超参数优化。

LLM方法和HedgeAgents均使用GPT-4-1106-preview版本,温度设置为0.7。内存模块采用基于文本相似度的存储和检索机制,使用text-embedding-3-large模型,top-k值为5。LLM方法根据各自研究的建议调整至最佳配置。

整体表现

选取了多种经典和先进的基线模型进行比较,包括三种规则基础的投资策略(MV、ZMR、TSM)、三种基于强化学习的金融代理(SAC、DeepTrader、AlphaMix+)和三种基于大语言模型的方法(FinGPT、FinMem、FinAgent)。强化学习方法在理解金融市场复杂性和不确定性方面优于规则基础策略,DeepTrader和AlphaMix+的年化收益率(ARR)分别为32.78%和37.59%,显著高于规则模型(MV: 13.03%,ZMR: -7.25%,TSM: 19.13%)。

图片

基于大语言模型的方法(如FinGPT、FinMem、FinAgent)在风险调整指标(如夏普比率和信息比率)上超越了强化学习方法,FinMem的ARR为47.67%,总收益率(TR)为221.99%,显示出其在信息处理和决策上的优势。

HedgeAgents在各项指标上表现卓越,主要得益于以下因素:

  • 战略预算分配:动态预算分配优化了多资产类别的投资,模型实现了71.60%的年化收益率(ARR)和405.34%的总回报(TR),显示出战略预算分配的有效性。

  • 风险管理:HedgeAgents的最大回撤(MDD)为14.21%,在风险管理方面优于所有基准模型。

  • 多样化与稳健性:HedgeAgents拥有最高的投资组合多样性(ENT和ENB),展现出对个别资产风险的韧性。

在2022年5月,尽管大多数基准模型的投资组合遭遇重大损失,HedgeAgents成功应对挑战,进一步证明其卓越能力。

图片

总体而言,HedgeAgents在收益、风险管理和多样化方面实现了良好平衡,适应复杂动态的投资环境。

消融分析

会议模块有效性:

  • ESC模块对投资组合多样化和尾部风险对冲至关重要,去除后ENT指标下降16.63%。

  • BAC模块对收益影响最大,去除后年化收益下降37.75%。

  • EMC模块对风险规避和收益稳健性重要,去除后最大回撤率增加71.93%。

  • 三个模块的协同效应显著,整体表现优于单独模块。

图片

LLM有效性:

  • 六种代表性模型在HedgeAgents框架中测试,结果显示框架不依赖于特定语言模型。

  • 参数规模增加有助于提升投资收益,gpt-4-1106-preview表现最佳。

  • 封闭源模型在各项指标上表现优异,开源模型Qwen-72B表现接近封闭源模型。

  • 选择GPT-4作为框架核心,系统三年总成本仅为15美元。

图片

没有套期保值的单一资产表现

图片

在比特币市场,HedgeAgents实现约210%的累计回报,远超其他模型,得益于专家Dave对区块链数据和市场趋势的分析。

在AAPL股票市场,HedgeAgents累计回报约160%,优于FinAgent和FinMem,专家Bob通过财务分析和市场预测保持稳定增长。

在YUAN外汇市场,HedgeAgents实现约9%的正回报,专家Emily利用宏观经济指标和地缘政治事件进行小幅盈利。

结果显示HedgeAgents在不同资产类别和市场条件下的多样性和稳健性。

可视化

通过可视化分析单个代理的决策过程,展示了Otto的对冲策略。

单一代理可视化。以比特币分析师Dave为例,他的工作流程始于市场分析,注意到比特币价格显著上涨。Dave查询历史表现,回忆在乐观条件下的投资经验,强调快速平仓的挑战。在决策阶段,Dave考虑当前宏观经济政策的积极影响,决定购买50%的比特币,并持续监控市场。反思阶段显示,资产在四个交易日内增值7.43%,验证了其策略的有效性。Dave的工作流程体现了历史经验与实时分析的结合,提升了在波动市场中的决策质量。

图片

对冲专家可视化。Otto是一个对冲专家,在比特币市场下跌10.22%时进行决策。目前投资组合为13.2%现金和56.8%比特币。风险评估考虑了比特币价格波动、联邦储备政策和市场流动性。Otto决定采取谨慎的平衡策略,避免过度交易和冒险策略。提出的对冲策略包括投资组合多样化、期权交易和风险管理。该策略在市场动荡中有效,最终资产在两天内增长8.6%。

图片

总结

HedgeAgents是一个多智能体系统,旨在通过对冲策略增强金融行动的稳健性。开发了一套专门的对冲代理,并定期组织会议以促进代理间的合作。实验结果显示该框架表现优越且稳健。可视化观察表明,HedgeAgents在记忆中生成的投资经验与人类专家相当。

如何学习大模型 AI ?

由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。

但是具体到个人,只能说是:

“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。

这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。

我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。

我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。

在这里插入图片描述

第一阶段(10天):初阶应用

该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。

  • 大模型 AI 能干什么?
  • 大模型是怎样获得「智能」的?
  • 用好 AI 的核心心法
  • 大模型应用业务架构
  • 大模型应用技术架构
  • 代码示例:向 GPT-3.5 灌入新知识
  • 提示工程的意义和核心思想
  • Prompt 典型构成
  • 指令调优方法论
  • 思维链和思维树
  • Prompt 攻击和防范

第二阶段(30天):高阶应用

该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。

  • 为什么要做 RAG
  • 搭建一个简单的 ChatPDF
  • 检索的基础概念
  • 什么是向量表示(Embeddings)
  • 向量数据库与向量检索
  • 基于向量检索的 RAG
  • 搭建 RAG 系统的扩展知识
  • 混合检索与 RAG-Fusion 简介
  • 向量模型本地部署

第三阶段(30天):模型训练

恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。

到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?

  • 为什么要做 RAG
  • 什么是模型
  • 什么是模型训练
  • 求解器 & 损失函数简介
  • 小实验2:手写一个简单的神经网络并训练它
  • 什么是训练/预训练/微调/轻量化微调
  • Transformer结构简介
  • 轻量化微调
  • 实验数据集的构建

第四阶段(20天):商业闭环

对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。

  • 硬件选型
  • 带你了解全球大模型
  • 使用国产大模型服务
  • 搭建 OpenAI 代理
  • 热身:基于阿里云 PAI 部署 Stable Diffusion
  • 在本地计算机运行大模型
  • 大模型的私有化部署
  • 基于 vLLM 部署大模型
  • 案例:如何优雅地在阿里云私有部署开源大模型
  • 部署一套开源 LLM 项目
  • 内容安全
  • 互联网信息服务算法备案

学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。

如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。

这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费

在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值