Q1-14.3 | (AI agent-AutoBA)一种用于全自动多组学分析的人工智能代理

An AI Agent for Fully Automated Multi-Omic Analyses

img

研究背景

随着基因组学、转录组学、蛋白质组学等“组学”领域的迅速发展,生物信息学在解析这些庞大且复杂的数据集中的重要性日益增加。传统的生物信息学分析流程依赖于用户手动选择合适的工具,配置环境,编写代码,且过程繁琐且易出错。尤其是在处理大规模组学数据时,这种手动操作不仅耗时长,而且易受人为因素影响,从而降低了分析的效率和精确度。随着大型语言模型(LLMs)如GPT系列的进步,利用其强大的自然语言处理能力来简化这些复杂过程已成为可能。然而,目前现有的AI工具多依赖于用户对分析流程的高度参与,且难以全面适应复杂多变的生物信息学任务。因此,开发一种能够完全自动化、灵活适应多种组学分析任务的AI工具,成为了解决当前生物信息学分析瓶颈的关键。

研究设计

1. 数据输入与目标设定:

  • 用户需要提供三项输入:数据路径(例如,RNA-Seq文件路径)数据描述(如单端测序或双端测序),以及最终的分析目标(如鉴定差异表达基因)。这些输入数据将为AutoBA生成详细的分析计划提供基础。

2. 分析计划生成:

  • AutoBA的工作流程分为三个主要阶段:计划阶段、代码生成阶段和执行阶段在计划阶段,AutoBA基于用户提供的信息生成详细的分析步骤。每个步骤都指定了所需的软件工具(如Trimmomatic、Hisat2、DESeq2等),并提供具体的操作和参数设置码生成与执行在代码生成阶段,AutoBA根据前期的分析计划生成对应的bash脚本。这些脚本涉及环境设置、软件安装和数据处理。AutoBA还自动处理常见的错误,例如在运行Hisat2时未先建立索引,AutoBA会通过ACR机制修复代码并继续执行 。

  • AutoBA集成了一个自动化代码修复模块,该模块能够在执行过程中识别并修复错误。每当执行中出现错误时,系统会记录并自动调整代码,确保任务顺利完成 。

3. 普适性与鲁棒性评估:

  • 为了评估,作者设计了多个多组学分析场景,包括基因组学、转录组学、蛋白质组学和代谢组学的数据。在40个不同的案例中,AutoBA表现出了90%的成功率,能够根据输入数据自适应调整分析策略 。

核心结果

1:AutoBA的工作流程设计

本图提供了AutoBA工作流程的概览,突出了其三大核心环节,并详细说明了每个阶段的操作和数据流。

1)用户输入阶段:

  • 数据路径:用户提供的原始数据路径指向数据文件(如.fastq、.bam等),AutoBA会自动识别并加载。
  • 数据描述:包括测序类型(如RNA-seq、ChIP-seq等)和数据特性(如单端、双端测序),此信息帮助AutoBA选择合适的工具。
  • 分析目标:用户可以明确其分析目标,如差异表达基因分析、变异检测等。

2)分析计划生成阶段:

  • 步骤细化:在此阶段,AutoBA基于用户输入自动构建分析计划,包括所需工具、每个步骤的具体命令、数据路径、输入参数等。每个步骤的结果由AutoBA定义,并具有自动适应性以处理数据特性不同的分析任务。
  • 分析工具选择:AutoBA根据所选任务自动选择相应的生物信息学工具(如DESeq2、Hisat2、Trimmomatic等)。

3)代码生成与执行阶段:

  • 自动生成bash脚本:在此阶段,AutoBA生成并执行bash脚本,自动配置环境、安装所需工具,并运行分析任务。整个过程由AutoBA完成,最大程度减少了人工干预。
  • 任务执行:执行分析任务时,AutoBA提供自动化的输出,包括结果报告和错误日志(通过ACR机制实现修复)。

img

2:AutoBA的评估与测试

此图展示了AutoBA在40个多组学案例中的表现,涵盖了基因组学、转录组学、蛋白质组学和代谢组学等多个领域,体现了AutoBA在不同数据类型和任务中的适应性。

1)计划生成的成功率:

  • 在40个案例中,AutoBA成功生成分析计划的成功率为90%(36/40),表明其能够灵活应对不同的生物信息学问题,并生成符合用户需求的分析方案。

2)代码生成的成功率:

  • 代码生成成功率为82.5%(33/40)。这一部分表现出AutoBA的高效性,能够基于分析计划自动生成高质量、执行无误的代码。然而,仍有部分特殊分析步骤会面临挑战,如依赖于特定版本的工具或配置。

3)自动化分析执行的成功率:

  • 其中,自动化执行的成功率为65%(26/40)。这项数据表明,AutoBA在执行完整的自动化分析任务时,仍然面临一定的挑战,尤其是涉及复杂数据处理或特定配置的情况。

4)引入ACR模块后的提升:

  • 在引入ACR模块后,AutoBA的性能得到了显著改善,代码执行的成功率提升至87.5%(35/40)。ACR模块自动修复了执行过程中出现的错误,并保证任务的稳定性。

img

3:RNA-Seq差异表达基因分析示例

图3展示了AutoBA如何自动执行RNA-Seq数据的差异表达基因分析,并通过ACR机制修复了常见的错误。

1)步骤解析:

  • 适配器修剪:首先,AutoBA自动使用Trimmomatic去除RNA-seq数据中的适配器序列,确保后续分析的准确性。
  • 基因组对齐:然后,AutoBA选择合适的对齐工具Hisat2,并将清洗后的数据对齐到参考基因组(mm39)。
  • 数据转换:使用Samtools将对齐后的数据从SAM格式转换为BAM格式,这一格式转换确保后续处理的准确性。
  • 基因计数与差异分析:AutoBA使用HTSeq统计每个基因的读取数,并通过DESeq2进行差异表达分析,识别不同组之间的差异基因。

2)ACR机制的修复作用:

  • 在此过程中,AutoBA通过自动检测和修复错误(如Hisat2未先进行基因组索引化)来确保分析顺利进行,极大降低了人工干预的需求。通过这种机制,AutoBA保证了即使在面对常见工具使用错误时,分析任务依然能够顺利完成。

img

4:AutoBA与其他方法的比较

本图对比了AutoBA与其他生物信息学工具(如ChatGPT、AutoGPT等)在减少人工干预和自动化执行方面的表现。

1)人工干预需求:

  • 传统工具和在线平台通常需要大量手动操作,包括数据上传、环境配置、工具安装、代码调试等。相比之下,AutoBA显著减少了这些步骤,用户仅需提供数据输入和分析目标,工具自动完成后续流程。
  • 与ChatGPT、AutoGPT等工具相比,AutoBA在执行过程中大大减少了人工干预。在自动化分析方面,AutoBA表现出更高的稳定性和成功率,尤其是在代码生成和执行的环节。

2)执行效率和稳定性:

  • AutoBA在线版本和本地版本(启用ACR后)在各个分析任务中都表现出了较低的人工干预需求,并且在线版本的执行效率更高。特别是ACR机制提升了稳定性,使得自动化分析的成功率得到了显著提高。
  • 在任务执行上,AutoBA的成功率达到87.5%,相比之下,ChatGPT的成功率仅为7.5%,这显示出AutoBA在自动化执行和错误修复方面的优势。

3)比较数据:

  • AutoGPT vs AutoBA:尽管AutoGPT具有较强的自我学习能力,但它在工具管理和环境配置方面的能力较弱,仍然需要用户进行大量的干预。相较而言,AutoBA能够自动完成更多步骤,表现出更高的效率和准确性。
  • ChatGPT vs AutoBA:ChatGPT虽然能够生成分析计划和代码,但无法实现全自动化的生物信息学任务执行,且在执行过程中的错误率较高。AutoBA则提供了更为稳定和全面的自动化流程,减少了用户的手动参与。

img

小结

从上述图表和结果可见,AutoBA在多组学数据分析任务中展示了优异的自动化能力和适应性。通过与传统工具和其他AI工具的比较,AutoBA显著减少了人工干预,提高了分析效率与准确性。特别是其自动化代码修复(ACR)机制,有效提升了工具的稳定性,减少了错误发生的几率。未来,通过进一步优化工具选择、增加对新型工具的支持,AutoBA有望在生物信息学领域成为一项核心工具,加速数据分析的自动化进程。AutoBA不仅为当前的生物信息学分析提供了一种高效的解决方案,还具备与最新的LLM技术兼容的能力,可以在未来随着大语言模型的发展而不断提升其功能,进一步降低生物信息学分析的技术门槛,推动个性化医疗和精准医学的发展。

如何学习大模型 AI ?

由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。

但是具体到个人,只能说是:

“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。

这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。

我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。

我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。

在这里插入图片描述

第一阶段(10天):初阶应用

该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。

  • 大模型 AI 能干什么?
  • 大模型是怎样获得「智能」的?
  • 用好 AI 的核心心法
  • 大模型应用业务架构
  • 大模型应用技术架构
  • 代码示例:向 GPT-3.5 灌入新知识
  • 提示工程的意义和核心思想
  • Prompt 典型构成
  • 指令调优方法论
  • 思维链和思维树
  • Prompt 攻击和防范

第二阶段(30天):高阶应用

该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。

  • 为什么要做 RAG
  • 搭建一个简单的 ChatPDF
  • 检索的基础概念
  • 什么是向量表示(Embeddings)
  • 向量数据库与向量检索
  • 基于向量检索的 RAG
  • 搭建 RAG 系统的扩展知识
  • 混合检索与 RAG-Fusion 简介
  • 向量模型本地部署

第三阶段(30天):模型训练

恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。

到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?

  • 为什么要做 RAG
  • 什么是模型
  • 什么是模型训练
  • 求解器 & 损失函数简介
  • 小实验2:手写一个简单的神经网络并训练它
  • 什么是训练/预训练/微调/轻量化微调
  • Transformer结构简介
  • 轻量化微调
  • 实验数据集的构建

第四阶段(20天):商业闭环

对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。

  • 硬件选型
  • 带你了解全球大模型
  • 使用国产大模型服务
  • 搭建 OpenAI 代理
  • 热身:基于阿里云 PAI 部署 Stable Diffusion
  • 在本地计算机运行大模型
  • 大模型的私有化部署
  • 基于 vLLM 部署大模型
  • 案例:如何优雅地在阿里云私有部署开源大模型
  • 部署一套开源 LLM 项目
  • 内容安全
  • 互联网信息服务算法备案

学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。

如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。

这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费

在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值