全文速览
本文介绍了一个基于大型语言模型(LLM)的自动化学合成开发平台——LLM-RDF(LLM-Based Reaction Development Framework)。该平台通过六个专门的LLM代理(包括文献搜索、实验设计、硬件执行、光谱分析、分离指导和结果解读等)实现了化学合成全流程的自动化。研究以铜/TEMPO催化的有氧醇氧化反应为模型反应,展示了从文献搜索到产物纯化的端到端合成开发能力,并在其他三种反应中验证了其通用性。该研究为利用LLM技术实现全自动化学合成开发提供了一种可行路径。
背景介绍
化学合成反应的开发是药物发现和工艺开发中的核心任务之一,通常需要大量时间和成本。传统的合成路线设计依赖于专家化学家和工程师的经验,通过迭代的“设计-制造-测试-分析”循环来确定高效的合成路线。然而,这一过程复杂且难以用算法解决。近年来,机器学习技术在加速合成设计的多个子任务中展现出巨大潜力,但现有的机器学习方法大多只能作为专家使用的单一工具,而完全自动化的端到端合成反应设计和开发仍然是一个未实现的目标。随着大型语言模型(如GPT-4)的出现,其强大的知识储备和灵活的决策能力为实现全自动合成开发提供了新的可能性。
图文解析
图1:LLM-RDF系统概述。图1a:展示了LLM技术在化学合成开发流程中的应用,与现有文献中报道的工作相比,LLM-RDF涵盖了从文献搜索到产物纯化的全流程。图1b:描述了人类化学家与LLM代理之间的交互方式。化学家通过自然语言描述任务,LLM代理则通过预训练的模型完成指定任务。图1c:展示了基于LLM-RDF的Web应用程序界面,化学家可以通过自然语言与自动化实验平台交互,无需编程技能。
图2:LLM代理助力文献搜索和信息提取。图2a:展示了文献搜索和信息提取的工作流程,由Literature Scouter代理完成。图2b:展示了人类化学家与Literature Scouter的交互对话。通过自然语言查询,Literature Scouter从Semantic Scholar数据库中提取相关文献,并推荐了最适合实际应用的方法(Cu/TEMPO催化体系)。图2c:展示了Literature Scouter从文献中提取的实验步骤和设计空间,为后续实验提供了基础。
图3:LLM代理助力底物范围和条件筛选。图3a:展示了底物范围和条件筛选的工作流程,涉及Experiment Designer、Hardware Executor、Spectrum Analyzer和Result Interpreter四个代理。图3b:展示了自然语言描述的高通量筛选(HTS)任务,Experiment Designer将其转化为标准化的实验设计。图3c:展示了Spectrum Analyzer如何自动分析GC-FID-MS数据,识别反应物和产物的色谱峰,并计算产率。图3d-e:展示了Spectrum Analyzer如何通过质谱数据识别反应物和产物的特征碎片信号。图3f:展示了Spectrum Analyzer如何通过FID信号积分计算反应产率。
图4:底物范围和条件筛选结果。图4a-b:展示了单醇和二醇在不同条件下的氧化反应结果。图4c-d:展示了部分底物和产物的结构式。图4e-f:展示了不同铜催化剂和碱组合下的产率热图,Result Interpreter总结了反应规律。
图5:LLM代理助力反应动力学研究。图5a:展示了反应动力学研究的工作流程,涉及Experiment Designer、Hardware Executor、Spectrum Analyzer和Result Interpreter。图5b:展示了不同溶剂对反应选择性的影响。图5c:展示了Experiment Designer设计的采样时间表。图5d:展示了Spectrum Analyzer如何分析1H NMR数据以确定反应物和产物的浓度。图5e:展示了Result Interpreter拟合的动力学模型曲线。
图6:LLM代理助力反应条件优化。图6a:展示了基于LLM代理的自驱动反应条件优化系统。图6b:展示了优化过程中产率的变化趋势。图6c-d:展示了Result Interpreter在不同实验阶段对优化停止的建议。
图7:LLM代理助力反应放大和产物纯化。图7a:展示了反应放大和产物纯化的工作流程。图7b:展示了Experiment Designer提出的放大策略和Separation Instructor优化洗脱液组成的过程。图7c:展示了不同高产率条件的比较。图7d:展示了纯化后目标产物的1H NMR谱图。
图8:LLM-RDF在其他合成任务中的应用。图8a-c:展示了LLM代理在SNAr反应动力学研究中的应用。图8d:展示了SNAr反应的机制。图8e-h:展示了LLM代理在光催化C-C偶联反应条件优化中的应用。图8i-l:展示了LLM代理在异质光电化学反应放大设计中的应用。
总结展望
本文通过构建LLM-RDF平台,展示了大型语言模型在化学合成全流程中的应用潜力。该平台通过六个专门的LLM代理实现了从文献搜索到产物纯化的自动化开发,并在多种反应中验证了其通用性。尽管LLM技术在化学领域的应用仍处于初级阶段,但本研究为未来更深入地利用LLM技术进行化学合成开发提供了一种可行的路径。未来的研究需要进一步提高LLM代理的可靠性、专业知识水平和数学运算能力,以实现更高效的自动化化学研究。
如何学习大模型 AI ?
由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。
但是具体到个人,只能说是:
“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。
这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。
我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。
我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。
第一阶段(10天):初阶应用
该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。
- 大模型 AI 能干什么?
- 大模型是怎样获得「智能」的?
- 用好 AI 的核心心法
- 大模型应用业务架构
- 大模型应用技术架构
- 代码示例:向 GPT-3.5 灌入新知识
- 提示工程的意义和核心思想
- Prompt 典型构成
- 指令调优方法论
- 思维链和思维树
- Prompt 攻击和防范
- …
第二阶段(30天):高阶应用
该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。
- 为什么要做 RAG
- 搭建一个简单的 ChatPDF
- 检索的基础概念
- 什么是向量表示(Embeddings)
- 向量数据库与向量检索
- 基于向量检索的 RAG
- 搭建 RAG 系统的扩展知识
- 混合检索与 RAG-Fusion 简介
- 向量模型本地部署
- …
第三阶段(30天):模型训练
恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。
到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?
- 为什么要做 RAG
- 什么是模型
- 什么是模型训练
- 求解器 & 损失函数简介
- 小实验2:手写一个简单的神经网络并训练它
- 什么是训练/预训练/微调/轻量化微调
- Transformer结构简介
- 轻量化微调
- 实验数据集的构建
- …
第四阶段(20天):商业闭环
对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。
- 硬件选型
- 带你了解全球大模型
- 使用国产大模型服务
- 搭建 OpenAI 代理
- 热身:基于阿里云 PAI 部署 Stable Diffusion
- 在本地计算机运行大模型
- 大模型的私有化部署
- 基于 vLLM 部署大模型
- 案例:如何优雅地在阿里云私有部署开源大模型
- 部署一套开源 LLM 项目
- 内容安全
- 互联网信息服务算法备案
- …
学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。
如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。