本周大模型新动向:可解释性压缩、视频推理链、启发式奖励

01

Task-Circuit Quantization: Leveraging Knowledge Localization and Interpretability for Compression

后训练量化(PTQ)通过将全精度权重映射到低比特权重来减少模型的内存占用,而无需昂贵的重新训练,但在低比特(2到3比特)设置中可能会降低下游性能。本文开发了一种新的混合精度PTQ方法,任务电路量化(TACQ),它借鉴了自动化电路发现的方法,直接根据特定权重电路对量化过程进行条件约束,这些权重电路被定义为与下游任务性能相关的权重集合。这些权重被保留为16比特权重,而其他权重则被量化,从而在仅增加边际内存成本的情况下保持性能。具体而言,TACQ通过对比未量化模型权重与均匀量化模型,估计由于量化导致的权重变化,并利用梯度信息预测对任务性能的影响,从而保留任务特定权重。本文在多个任务(包括问答、数学推理和文本到SQL转换)上将TACQ与其他混合精度量化方法进行了比较,涉及Llama-3和Qwen2.5模型。结果表明,在使用相同的校准数据和较低权重预算的情况下,TACQ在2比特和3比特设置中显著优于基线方法。仅用3.1比特,本文就能恢复Llama-3-8B-Instruct未量化16比特性能的96%,比SPQR高出5.25%的绝对改进。此外,本文还在2比特设置中观察到与最强基线SliM-LLM相比平均有14.74%的增益。即使不针对特定任务进行条件约束,TACQ也能实现7.20%的增益,表明其识别重要权重的能力不仅限于任务条件设置。

img

img

img

img

文章链接:

https://arxiv.org/pdf/2504.07389

02

SlimSpeech: Lightweight and Efficient Text-to-Speech with Slim Rectified Flow

近年来,基于流匹配的语音合成技术在减少推理步骤的同时,显著地提高了合成语音的质量。本文介绍了SlimSpeech,一个轻量级的,高效的语音合成系统的基础上整流。我们已经建立在现有的语音合成方法,利用整流模型,修改其结构,以减少参数,并作为一个教师模型。通过改进回流操作,作者直接从较大的模型中导出具有更直的采样轨迹的较小模型,同时利用蒸馏技术进一步提高模型性能。实验结果表明,本文提出的方法,与显着减少的模型参数,通过一步采样,实现了较大的模型相当的性能。

img

img

img

03

Enhancing Time Series Forecasting via Multi-Level Text Alignment with LLMs

将大型语言模型(LLMs)应用于时间序列预测面临独特挑战,因为时间序列数据是连续的,而LLMs基于离散的标记进行操作。尽管LLMs在自然语言处理(NLP)和其他结构化领域取得了成功,但将时间序列数据与基于语言的表示对齐,同时保持预测准确性和可解释性,仍然是一个重大障碍。现有的方法尝试将时间序列数据重新编程为基于文本的形式,但这些方法往往无法提供有意义且可解释的结果。本文提出了一种利用LLMs进行时间序列预测的多级文本对齐框架,该框架不仅提高了预测准确性,还增强了时间序列表示的可解释性。该方法将时间序列分解为趋势、季节性和残差成分,并将这些成分重新编程为特定于成分的文本表示。本文引入了一种多级对齐机制,将特定于成分的嵌入与预训练的词标记对齐,从而实现更可解释的预测。实验结果表明,本文提出的方法在显著减少模型参数的同时,通过单步采样实现了与较大模型相当的性能。

img

img

img

img

img

04

Research on the Design of a Short Video Recommendation System Based on Multimodal Information and Differential Privacy

随着短视频平台的快速发展,推荐系统已成为提升用户体验和增强平台参与度的关键技术。然而,尽管短视频推荐系统利用多模态信息(如图像、文本和音频)来提高推荐效果,但也面临着用户隐私泄露的严峻挑战。本文提出了一种基于多模态信息和差分隐私保护的短视频推荐系统。首先,利用深度学习模型对多模态数据进行特征提取和融合,有效提高了推荐精度。然后,设计了一种适用于推荐场景的差分隐私保护机制,在保持系统性能的同时确保用户数据隐私。实验结果表明,本文提出的方法在推荐精度、多模态融合效果和隐私保护性能方面优于现有的主流方法,为短视频平台推荐系统的设计提供了重要的见解。

img

img

img

img

img

05

FG-RAG: Enhancing Query-Focused Summarization with Context-Aware Fine-Grained Graph RAG

检索增强生成(RAG)通过整合外部知识,使大型语言模型能够提供更精确和相关的回答。在查询聚焦摘要(QFS)任务中,基于图的RAG方法显著提高了生成回答的全面性和多样性。然而,现有的基于图的RAG方法主要关注粗粒度信息摘要,缺乏对特定查询的感知能力,且检索到的内容缺乏足够的上下文信息来生成全面的回答。为了解决当前RAG系统的不足,本文提出了一种上下文感知的细粒度图RAG(FG-RAG)方法,以增强QFS任务的性能。FG-RAG在图检索中采用上下文感知的实体扩展,扩展图中检索到的实体覆盖范围,从而为检索到的内容提供足够的上下文信息。此外,FG-RAG利用查询级细粒度摘要,在回答生成过程中纳入细粒度细节,增强生成摘要的查询感知能力。评估结果表明,FG-RAG在处理QFS任务时,在全面性、多样性和赋能等多个指标上优于其他RAG系统。

img

img

img

06

VCR-Bench: A Comprehensive Evaluation Framework for Video Chain-of-Thought Reasoning

链式思考(CoT)推理的发展显著提升了大型语言模型(LLMs)和大型视觉语言模型(LVLMs)的能力。然而,目前缺乏对视频CoT推理的严格评估框架。现有的视频基准测试未能充分评估推理过程,也未能揭示失败是由于感知能力还是推理能力的不足。因此,本文提出了VCR-Bench,这是一个旨在全面评估LVLMs视频链式思考推理能力的新基准测试。VCR-Bench包含859个视频,涵盖多种视频内容和时长,以及1034个高质量的问答对。每个问答对都手动标注了逐步的CoT理由,每一步都标记以表明其与感知或推理能力的关联。此外,本文设计了七个不同的任务维度,并提出了CoT评分,基于逐步标注的CoT理由来评估整个CoT过程。广泛的实验表明,当前的LVLMs存在显著的局限性。即使是表现最好的模型o1,也仅实现了62.8%的CoT评分和56.7%的准确率,而大多数模型的得分低于40%。实验表明,大多数模型在感知步骤上的得分低于推理步骤,揭示了LVLMs在复杂视频推理中处理时空信息的关键瓶颈。CoT评分与准确率之间的强正相关性证实了本文评估框架的有效性,并强调了CoT推理在解决复杂视频推理任务中的关键作用。作者希望VCR-Bench能够作为一个标准化的评估框架,揭示复杂视频推理任务中的实际不足。

img

img

img

img

img

*07**SpecReason: Fast and Accurate Inference-Time Compute via Speculative Reasoning
*最近在推理时计算方面的进展通过使用大型推理模型(LRMs)生成长推理链(CoTs)显著提升了复杂任务的性能。然而,这种提升的准确性是以高推理延迟为代价的,因为生成的推理序列较长,且解码的自回归性质导致延迟随序列长度线性增加。本文的关键见解是,LRM推理及其嵌入的推理对近似非常容忍:复杂任务通常被分解为更简单的步骤,每个步骤的价值在于为后续步骤提供语义洞察,而不仅仅是生成的确切标记。因此,本文提出了SpecReason,一个通过使用轻量级模型(推测性地)执行更简单的中间推理步骤来自动加速LRM推理的系统,并仅保留成本较高的基础模型来评估(并可能纠正)推测的输出。重要的是,SpecReason专注于利用思考标记的语义灵活性来保持最终答案的准确性,这与之前的推测技术(尤其是推测性解码)形成互补,后者要求每个步骤的标记级别等价。在多种推理基准测试中,SpecReason实现了比传统LRM推理快1.5–2.5倍的速度提升,同时将准确性提高了1.0–9.9%。与不使用SpecReason的推测性解码相比,它们的组合进一步降低了19.4–44.2%的延迟。

img

img

img

img

如何学习大模型 AI ?

由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。

但是具体到个人,只能说是:

“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。

这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。

我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。

我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。

在这里插入图片描述

第一阶段(10天):初阶应用

该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。

  • 大模型 AI 能干什么?
  • 大模型是怎样获得「智能」的?
  • 用好 AI 的核心心法
  • 大模型应用业务架构
  • 大模型应用技术架构
  • 代码示例:向 GPT-3.5 灌入新知识
  • 提示工程的意义和核心思想
  • Prompt 典型构成
  • 指令调优方法论
  • 思维链和思维树
  • Prompt 攻击和防范

第二阶段(30天):高阶应用

该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。

  • 为什么要做 RAG
  • 搭建一个简单的 ChatPDF
  • 检索的基础概念
  • 什么是向量表示(Embeddings)
  • 向量数据库与向量检索
  • 基于向量检索的 RAG
  • 搭建 RAG 系统的扩展知识
  • 混合检索与 RAG-Fusion 简介
  • 向量模型本地部署

第三阶段(30天):模型训练

恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。

到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?

  • 为什么要做 RAG
  • 什么是模型
  • 什么是模型训练
  • 求解器 & 损失函数简介
  • 小实验2:手写一个简单的神经网络并训练它
  • 什么是训练/预训练/微调/轻量化微调
  • Transformer结构简介
  • 轻量化微调
  • 实验数据集的构建

第四阶段(20天):商业闭环

对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。

  • 硬件选型
  • 带你了解全球大模型
  • 使用国产大模型服务
  • 搭建 OpenAI 代理
  • 热身:基于阿里云 PAI 部署 Stable Diffusion
  • 在本地计算机运行大模型
  • 大模型的私有化部署
  • 基于 vLLM 部署大模型
  • 案例:如何优雅地在阿里云私有部署开源大模型
  • 部署一套开源 LLM 项目
  • 内容安全
  • 互联网信息服务算法备案

学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。

如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。

这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费

在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值