随着ChatGPT、Gemini等大型语言模型(LLM)的普及,与AI对话、让AI完成任务已经成为许多人的日常。但你是否发现,有时候AI的回答并不如预期?这很可能不是模型本身的问题,而是你给出的“指令”不够清晰或巧妙。
这门“给AI下指令”的艺术和科学,就叫做 提示词工程(Prompt Engineering)。它不是数据科学家或机器学习工程师的专属技能,而是每个与LLM打交道的人都能掌握的关键能力。
而谷歌今年发布的《提示词工程说明手册》就介绍了如何让你成为Prompt高手!
什么是提示词工程?为什么它如此重要?
简单来说,提示词工程就是设计高质量的提示词(Prompt),以引导LLM生成准确、相关且符合预期的输出。LLM本质上是一个预测引擎,它根据输入的文本序列预测下一个最有可能的词元(Token)。你写的提示词,就是在为模型设定一个“起点”和“方向”,帮助它预测出正确的序列。
一个好的提示词能让LLM事半功倍,完成文本摘要、信息提取、问答、分类、翻译、代码生成等多种任务。而模糊不清的提示词则可能导致模型给出模棱两可、不准确甚至完全错误的回答。
提示词工程是一个迭代优化的过程,需要不断尝试、调整和评估。
核心技术:让你的Prompt更有效
文档详细介绍了多种提示词技术,从基础到进阶,帮助你更精准地引导模型:
1. 基础技术:零样本与少样本 (Zero-shot & Few-shot)
①零样本 (Zero-shot):用最简单的方式,只提供任务描述和输入文本,不给任何示例。
*②少样本 (One-shot & Few-shot):*当零样本不怎么工作的时候,可以提供一个(One-shot)或多个(Few-shot)输入-输出示例。这是非常有效的方法,能让模型模仿示例的结构、风格和模式。示例越多、质量越高,效果越好。
2. 设定身份与场景:系统、情境与角色提示 (System, Contextual & Role Prompting)
①系统提示 (System prompting):设定模型的整体行为或输出格式要求(如“回答要尊重他人”),有助于控制输出结构和安全性。
②角色提示 (Role prompting):让模型扮演特定角色(如旅行向导、老师),以该角色的口吻、风格和知识背景进行回应。
③情境提示 (Contextual prompting):提供与当前任务相关的具体背景信息,帮助模型理解细节和语境。
3. 进阶思考与行动:提升模型的推理能力
①回溯提示 (Step-back prompting):先让模型思考一个与任务相关的更普遍或基础的问题(相当于你先引导它思考),然后将这个答案作为情境,再解决原问题。有助于激活模型的背景知识和推理过程。
②思维链 (Chain of Thought, CoT):要求模型“一步一步思考”。通过生成中间推理步骤,显著提升模型在数学、常识推理等复杂任务上的表现。零样本基础上只需在Prompt末尾加上“Let’s think step by step.”;少样本基础上则在示例中展示推理过程。
③自洽性 (Self-consistency):多次运行思维链提示(使用较高Temperature),生成多条推理路径,然后选择出现频率最高的答案作为最终结果。
④思维树 (Tree of Thoughts, ToT):思维链的泛化,允许模型同时探索多个推理分支,而非单一线性路径。更适合需要探索和规划的复杂问题。
上图为思维链和思维树的差别
⑤结合推理(Reason)和行动(Act):模型先推理,然后决定调用外部工具(如搜索、代码解释器)执行“行动”,再根据“观察”到的结果更新推理。
LLM不仅能处理自然语言,在代码方面也表现出色
你可以用Prompt让模型:编写代码(根据需求生成代码片段)、解释代码(理解并解释现有代码)、翻译代码(将代码从一种语言翻译到另一种语言)、调试和审查代码(找出代码中的错误并提出改进建议)
成为Prompt高手的最佳实践
文档总结了许多实用的最佳实践,助你事半功倍:
除了上面说的提供示例、模拟角色的技巧,还提供了提升建议。
1. 保持简洁清晰:Prompt要易于理解,避免使用复杂或模糊的语言。多使用描述动作的动词。
2. 明确输出要求:具体说明你期望的输出格式、长度和内容。
3. 多用指令,少用限制:告诉模型“做什么”,而不是“不做什么”。积极的指令通常比消极的限制更有效。
4. 控制输出长度:通过配置或在Prompt中明确要求输出长度(如“用一条推文的长度解释…”)。
5. 使用变量:在Prompt中使用变量,使其更具通用性和可复用性,方便集成到应用中。
如何学习大模型 AI ?
由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。
但是具体到个人,只能说是:
“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。
这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。
我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。
我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。
第一阶段(10天):初阶应用
该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。
- 大模型 AI 能干什么?
- 大模型是怎样获得「智能」的?
- 用好 AI 的核心心法
- 大模型应用业务架构
- 大模型应用技术架构
- 代码示例:向 GPT-3.5 灌入新知识
- 提示工程的意义和核心思想
- Prompt 典型构成
- 指令调优方法论
- 思维链和思维树
- Prompt 攻击和防范
- …
第二阶段(30天):高阶应用
该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。
- 为什么要做 RAG
- 搭建一个简单的 ChatPDF
- 检索的基础概念
- 什么是向量表示(Embeddings)
- 向量数据库与向量检索
- 基于向量检索的 RAG
- 搭建 RAG 系统的扩展知识
- 混合检索与 RAG-Fusion 简介
- 向量模型本地部署
- …
第三阶段(30天):模型训练
恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。
到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?
- 为什么要做 RAG
- 什么是模型
- 什么是模型训练
- 求解器 & 损失函数简介
- 小实验2:手写一个简单的神经网络并训练它
- 什么是训练/预训练/微调/轻量化微调
- Transformer结构简介
- 轻量化微调
- 实验数据集的构建
- …
第四阶段(20天):商业闭环
对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。
- 硬件选型
- 带你了解全球大模型
- 使用国产大模型服务
- 搭建 OpenAI 代理
- 热身:基于阿里云 PAI 部署 Stable Diffusion
- 在本地计算机运行大模型
- 大模型的私有化部署
- 基于 vLLM 部署大模型
- 案例:如何优雅地在阿里云私有部署开源大模型
- 部署一套开源 LLM 项目
- 内容安全
- 互联网信息服务算法备案
- …
学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。
如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。