在人工智能领域,RAG(Retrieval-Augmented Generation)技术作为一种结合了检索和生成模型的方法,已经在多个应用中展现出其潜力。然而,尽管RAG技术具有显著的优势,但在实际应用中仍然面临三大痛点:切片方式粗暴、检索不精准以及缺乏大局观。这些问题的存在,不仅影响了技术的应用效果,也限制了其在更广泛场景中的推广。
切片方式粗暴是RAG技术面临的一个重要问题。在RAG模型中,输入文本通常被分割成多个片段或“切片”,以便于检索和生成。然而,当前的切片方法往往过于简单粗暴,缺乏对文本语义和结构的深入理解。这种粗暴的切片方式可能导致关键信息的丢失或误切,从而影响后续的检索和生成效果。例如,在处理长文本或复杂语境时,简单的切片方法可能无法捕捉到文本的深层含义和逻辑关系,导致生成的回答或内容与原始文本的意图不符。因此,如何改进切片方法,使其更加智能化和精细化,是RAG技术需要解决的首要问题。
检索不精准是RAG技术面临的另一个痛点。RAG模型的核心在于通过检索外部知识库来增强生成内容的质量和准确性。然而,当前的检索机制往往存在精度不足的问题,无法有效筛选出最相关和最有价值的信息。这种检索不精准的问题,一方面源于知识库本身的局限性和不完整性,另一方面也与检索算法的设计和优化有关。在实际应用中,检索结果的不精准可能导致生成内容的偏差或错误,进而影响用户体验和应用效果。因此,如何提高检索的精准度,优化检索算法,是RAG技术需要重点突破的方向。
缺乏大局观是RAG技术面临的第三个痛点。RAG模型在生成内容时,往往过于依赖局部信息和片段化的知识,而忽视了整体语境和全局视角。这种缺乏大局观的问题,可能导致生成内容缺乏连贯性和一致性,无法全面反映原始文本的意图和背景。例如,在处理多轮对话或复杂任务时,RAG模型可能无法有效整合和利用多方面的信息,导致生成内容与整体语境脱节。因此,如何增强RAG模型的全局意识和语境理解能力,使其在生成内容时能够综合考虑多方面因素,是RAG技术需要进一步探索和解决的问题。
RAG技术在切片方式、检索精度和全局视角方面面临的三大痛点,严重影响了其应用效果和推广潜力。为了解决这些问题,研究人员需要从多个角度入手,改进切片方法、优化检索算法、增强全局意识,以期推动RAG技术在更广泛领域中的应用和发展。
如何学习大模型 AI ?
由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。
但是具体到个人,只能说是:
“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。
这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。
我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。
我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。
第一阶段(10天):初阶应用
该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。
- 大模型 AI 能干什么?
- 大模型是怎样获得「智能」的?
- 用好 AI 的核心心法
- 大模型应用业务架构
- 大模型应用技术架构
- 代码示例:向 GPT-3.5 灌入新知识
- 提示工程的意义和核心思想
- Prompt 典型构成
- 指令调优方法论
- 思维链和思维树
- Prompt 攻击和防范
- …
第二阶段(30天):高阶应用
该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。
- 为什么要做 RAG
- 搭建一个简单的 ChatPDF
- 检索的基础概念
- 什么是向量表示(Embeddings)
- 向量数据库与向量检索
- 基于向量检索的 RAG
- 搭建 RAG 系统的扩展知识
- 混合检索与 RAG-Fusion 简介
- 向量模型本地部署
- …
第三阶段(30天):模型训练
恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。
到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?
- 为什么要做 RAG
- 什么是模型
- 什么是模型训练
- 求解器 & 损失函数简介
- 小实验2:手写一个简单的神经网络并训练它
- 什么是训练/预训练/微调/轻量化微调
- Transformer结构简介
- 轻量化微调
- 实验数据集的构建
- …
第四阶段(20天):商业闭环
对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。
- 硬件选型
- 带你了解全球大模型
- 使用国产大模型服务
- 搭建 OpenAI 代理
- 热身:基于阿里云 PAI 部署 Stable Diffusion
- 在本地计算机运行大模型
- 大模型的私有化部署
- 基于 vLLM 部署大模型
- 案例:如何优雅地在阿里云私有部署开源大模型
- 部署一套开源 LLM 项目
- 内容安全
- 互联网信息服务算法备案
- …
学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。
如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。