知名风险投资机构Bessemer Venture Partners(BVP)发布了一份关于Agent的洞察,报告中给Agent从L0到L6进行了一个划分。
今天给大家分享一下这份报告!
首先,Bessemer对AI Agent的定义是:
能够执行链式思维推理,以准确地对序列化工作流采取行动的基础模型的软件应用程序。
同时,在他们眼里,一个Agent必须具备以下几个能力:
- state 必须有个“实体”,无论是大模型还是软件应用,并且能感知和理解环境。
- Intelligence 得会“思考”,能进行链式思维推理,比如规划、反思、学习、自我审查、记忆等。
- Execute actions 能“动手干活”,比如部署AI生成的代码,或者起草并发送邮件。
- Complex tasks 能搞定那些需要一步步来、动态变化或者形成序列的复杂工作流程。
- Reliability and Entitlements 干活得靠谱,并且清楚自己代表谁、有啥权限。
Agent的7个等级
Bessemer借鉴了自动驾驶行业的分级方法,提出了从L0到L6的清晰划分。
下面我们就一层层来看:
L0:无智能 (No agency)
简单说,就是完全依赖人工操作的AI系统,比如你手动去Prompt一个LLM,或者用一些基于规则的自动化工具。这些在Bessemer看来,还算不上Agent。
L1:思维链推理 (Chain-of-thought reasoning)
到了这一层,Agent开始展现出“智能”了。它能进行链式思考,理解上下文并进行自我评估,就像我们人类交作业前会自己检查一遍一样。这为后续的可靠性打下了基础,也方便我们追踪它的“思考过程”。
L2:AI副驾驶(Conditional agency as co-pilot)
L2的Agent不仅能提供信息,还能准确理解信息并感知环境,然后“提议”一些行动。但是,最终还是得有人类“主驾驶”来拍板,批准它的提议或者授权它去执行。
- 举个栗子: 编程助手(Co-pilot)可以在IDE里给出代码补全建议,但最终部署代码,或者允许AI直接修改代码库,还是得程序员自己操作或人类经理批准。
L3:任务执行小能手(High autonomy to act on tasks)
这一层的AI Agent拥有了操作系统的权限和资格,可以高度自主地完成任务,并且能保证很强的可靠性。
- 举个栗子: 代码Agent能够自己生成代码,并且直接、正确地修改代码库,无需人审查。
L4:AI打工人上线(Perform job)
完全自主的AI员工出现了!它们能够理解环境,设定并完成目标,处理复杂的、序列化的工作流程,甚至能搞定以前从未见过的新任务。
- 举个栗子: AI Agent完全可以像一个初级软件工程师一样独立工作。
L5:AI梦之队(Teams of agents)
单个AI Agent牛还不够,L5要求它们能组成团队!Agent之间可以成功地互动、协作、共享信息,共同完成一个大目标。
- 举个栗子: 一群AI Agent像一个软件工程师突击队一样,协同作战完成项目。
L6:AI当领导(Manage teams of agents)
最高境界来了!这里的Agent不仅能协同工作,还能招募、评估其他AI,指导它们,给它们反馈,甚至在必要时替换掉不给力的AI下属。
- 举个栗子: AI工程经理或AI产品经理,负责协调和评估其他AI的工作,以确保某个功能顺利上线。
未来,AI有望改进甚至自动化人类所做的每一项信息工作,包括投资人的工作。这不仅会带来生产力的巨大提升,甚至可能导致劳动力向“AI Agent为主”的重大转变。
如果你对人工智能即将带来的可能性还存有疑虑,Bessemer提醒,这或许只是我们一厢情愿的“错觉”(intelusional - intelligent + delusional,指对AI能力和风险的误判)。
如何学习大模型 AI ?
由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。
但是具体到个人,只能说是:
“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。
这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。
我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。
我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。
第一阶段(10天):初阶应用
该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。
- 大模型 AI 能干什么?
- 大模型是怎样获得「智能」的?
- 用好 AI 的核心心法
- 大模型应用业务架构
- 大模型应用技术架构
- 代码示例:向 GPT-3.5 灌入新知识
- 提示工程的意义和核心思想
- Prompt 典型构成
- 指令调优方法论
- 思维链和思维树
- Prompt 攻击和防范
- …
第二阶段(30天):高阶应用
该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。
- 为什么要做 RAG
- 搭建一个简单的 ChatPDF
- 检索的基础概念
- 什么是向量表示(Embeddings)
- 向量数据库与向量检索
- 基于向量检索的 RAG
- 搭建 RAG 系统的扩展知识
- 混合检索与 RAG-Fusion 简介
- 向量模型本地部署
- …
第三阶段(30天):模型训练
恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。
到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?
- 为什么要做 RAG
- 什么是模型
- 什么是模型训练
- 求解器 & 损失函数简介
- 小实验2:手写一个简单的神经网络并训练它
- 什么是训练/预训练/微调/轻量化微调
- Transformer结构简介
- 轻量化微调
- 实验数据集的构建
- …
第四阶段(20天):商业闭环
对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。
- 硬件选型
- 带你了解全球大模型
- 使用国产大模型服务
- 搭建 OpenAI 代理
- 热身:基于阿里云 PAI 部署 Stable Diffusion
- 在本地计算机运行大模型
- 大模型的私有化部署
- 基于 vLLM 部署大模型
- 案例:如何优雅地在阿里云私有部署开源大模型
- 部署一套开源 LLM 项目
- 内容安全
- 互联网信息服务算法备案
- …
学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。
如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。