使用Streamlit、LangChain、Neo4j和GPT-4o构建GraphRAG实战讲解及开源实现

非结构化数据到可查询图谱

今天我要通过使用Neo4j、LangChain和Streamlit的GraphRAG示例来创建一个可以与您的转换为知识图谱的文档进行交谈的Chatbot。GraphRAG是由微软研究团队于2024年2月提出的[重磅-微软发表GraphRAG论文并即将开源项目]。他们最近基于这项工作发布了一个实现[重磅 - 微软官宣正式在GitHub开源GraphRAG],您也应该去了解一下。

本文编译自

Build GraphRAG Using Streamlit, LangChain, Neo4j & GPT-4o - The Bright Journey with AI (brightjourneyai.com)

https://brightjourneyai.com/build-graphrag-using-streamlit-langchain-neo4j-gpt-4o/

开源代码在github

https://github.com/BrightJourneyAI/graph-rag

使用知识图谱的RAG

使用 LangChain 和 GPT-4o 在 Garmin 手表数据上构建的 NEO4j 图

我们已经知道,RAG旨在帮助LLMs消化超出其原始训练数据的新知识。这使得更近期或以前被遮蔽的信息能够被纳入传递给用户的回答中。这也有助于减少幻觉,暂且称其为基本RAG。尽管这能够提供更好的结果,并具有其自身的优化,但它面临的一个挑战在于连接通过模糊关系分隔的不同知识的能力。

我们知道,信息通常是松散相关的,而上下文并非总是干净地相互关联的。知识图谱在代表和查询这些复杂关系方面表现出色。术语“多跳”用于描述这个概念,即答案可能跨越多个关系边缘。通过基本RAG实现,衍生的知识往往仅限于输入的内容。例如,在我们之前比较Garmin跑步手表的例子中,除非在新数据中明确说明了这一事实,否则它无法理解专业跑步者更青睐更先进的训练手表。

这就是知识图谱和RAG可以合作的地方。通过利用知识图谱在关系中映射和查询多跳的能力,我们可以构建更复杂和丰富的答案。它通过使用从新源文档中检索到的结构化和非结构化数据,提供与用户查询相关的更丰富的数据点。以前面的例子为例,它不仅可以返回专业跑步者更青睐更先进的训练手表这一事实,还可以返回这些手表到底是什么以及它们共享哪些独特特点。这正是RAG的真正力量发挥的地方。

工作原理

我们将在接下来的几节中讨论细节和代码,但我只想花一点时间概述GraphRAG实现背后的高级架构。采取的方法是创建既有向量化相似度搜索又有图查询的混合体,以返回结构化和非结构化数据。通过这种方式,我们可以利用从查询图和其关系中获取的上下文来增强基本RAG的益处。

下面是该过程的简单轮廓,分为两个阶段:

  • RAG数据存储 - 该组件负责建立用于在用户提出问题时检索背景的数据存储。与基本的RAG一样,我们将文档划分成块,使其与LLMs上下文窗口兼容。每个块都转换为一个图形文档,图形从每个连续文档中逐步构建。

  • 混合检索 - 由于此解决方案既使用图查询又使用向量相似度搜索,我们利用构建的图形存储原始文档块,并从中构建向量索引。

  • 检索器 - 在这里,我们接受用户问题提取问题中的实体,然后使用这些实体进行向量搜索和构建图查询。最终数据与原始问题一起发送到LLM,LLM返回一个上下文感知答案。

使用混合检索器架构的GraphRAG概述,结图查询和矢量语义搜索以获取相关内容。

Components组件

  • LangChain - LangChain是一个开源框架,简化了构建、部署和管理大型语言模型(LLMs)的过程。它提供了强大的基础设施和丰富的集成和函数库,帮助快速原型设计和开发基于LLM的应用程序。

  • Neo4j - Neo4j是一个高性能的图形数据库管理系统。它利用Cypher查询语言进行高效的查询和操作,使其成为需要复杂数据关系的应用程序的理想选择,比如推荐引擎、欺诈检测、社交网络和IT基础设施管理。

  • GPT-4o - GPT-4o是OpenAI在撰写时发布的最新模型。借助令人印象深刻的训练数据集,并在连续模型的基础上构建,GPT-4o被视为其他模型试图匹敌的基准。对于这个应用程序,我们将使用LangChain内置的集成与我们的模型进行交互。您将需要提供自己的API密钥。

  • Streamlit - Streamlit是一个开源框架,使开发人员能够轻松创建和共享美观的自定义网络应用程序,用于机器学习和数据科学项目。通过使用简单的Python脚本,Streamlit允许用户构建交互式和视觉上吸引人的应用程序,而无需深入了解Web开发。

  • youtube-transcript-api - Python库,用于检索YouTube视频的剧本或字幕,包括自动生成的字幕。它支持多种语言和字幕翻译,无需使用无头浏览器。API可通过编程或命令行界面使用,提供批量提取、格式选项和代理支持等功能。

  • LLMGraphTransformer - 注:仍然是实验性功能。LangChain中的LLMGraphTransformer是一个工具,使用大型语言模型(LLM)将文档转换为基于图形的格式。它允许用户指定节点和关系类型,根据需要应用约束和筛选。转换器可以异步处理文档,并支持根据提供的模式和约束生成结构化输出,使其成为将文本数据转换为结构化图数据用于各种应用程序的理想选择。

示例案例–Garmin手表推荐

尽管我已经购买了我的新Garmin Forerunner 255,但我将继续以它作为我们示例的基础。由于拥有众多的变体、功能和价格档次,它提供了一个很好的工作基础示例。作为我最终要表达的一个小概要,它也是一个具有专业知识的代理人的良好基础,可以用一个小图表来代表—请留意。

我认为这已经足够了—让我们开始编写一些代码

应用概述

我们正在使用的示例应用程序有四个主要组件:

  1. 本地使用Docker托管的Neo4j

  2. 一种图形构建工具,可以提取非结构化文本并使用人工智能将其转换为知识图

  3. 从图中提取结构化和非结构化文本的混合检索器

  4. 一个Streamlit用户界面,允许用户与其图形化知识文档进行对话

使用 Docker 配置 Neo4j 环境

首先,我设置了一个本地运行的 Neo4j 实例,为了简单起见,使用了 Docker。首先要做的是下载 APOC JAR 并将其放入 $PWD/plugins 目录。这基本上可以放在任何你喜欢的地方,只需确保以下 Docker 命令知道你放置了 JAR 的位置。APOC 是 Neo4j 的一个附属库,包含有助于其操作的有用功能。这在这个示例中是必需的。

确保您已经安装了 Docker Desktop 并执行以下命令。

1

2

3

4

5

6

7

8

9

10

docker run `

    -p 7474:7474 -p 7687:7687 `

    -v ${PWD}/data:/data -v ${PWD}/plugins:/plugins `

    --name neo4j-v5-apoc `

    -e NEO4J_apoc_export_file_enabled=true `

    -e NEO4J_apoc_import_file_enabled=true `

    -e NEO4J_apoc_import_file_use_neo4j_config=true `

    -e NEO4J_PLUGINS='["apoc"]' `

    -e NEO4J_dbms_security_procedures_unrestricted="apoc.*" `

    neo4j:5.20.0

上述内容格式适用于 Powershell 环境,请根据您的系统/终端进行相应调整。

从非结构化数据构建图谱

为了演示合并多种来源类型,我创建了三个文档提取器。其中一个用于 YouTube,一个用于维基百科,另一个用于纯文本。

1

2

3

4

5

6

7

8

9

10

11

12

def extract_youtube_transcript(self, url) -List:

        """

        Uses the Langchain interface to extract YouTube transcript from

        the specified URL. Under the hood this uses youtube-transcript-api

 

        Args:

            url (str): URL of the YouTube video to fetch transcript for

 

        Returns:

            List: Extracted transcript documents

        """

        return YoutubeLoader.from_youtube_url(url).load()

1

2

3

4

5

6

7

8

9

10

def extract_wikipedia_content(self, search_query):

        """

        Uses the search query and LangChain interface to extract

        content from the results of a Wikipedia search

 

        Args:

            search_query (str): The query to search for Wikipedia content on

        """

        raw_docs = WikipediaLoader(query=search_query).load()

        self.chunk_and_graph(raw_docs)

1

2

3

4

5

6

7

8

9

10

11

def graph_text_content(self, path):

        """

        Provided with a text document, will extract and chunk the text

        before generating a graph

 

        Args:

            path (str): Text document path

        """

        text_docs = TextLoader(path).load()

        print(text_docs)

        self.chunk_and_graph(text_docs)

提取内容后,现在您需要对文本进行分块。有许多正在出现的策略可用于有效地为RAG实现拆分文档,在这种情况下,我坚持使用了一个简单的TokenTextSplitter。

1

2

3

4

5

6

7

8

9

10

11

12

13

14

def chunk_document_text(self, raw_docs):

        """

        Accepts raw text context extracted from source and applies a chunking

        algorithm to it.

 

        Args:

            raw_docs (str): The raw content extracted from the source

 

        Returns:

            List: List of document chunks

        """

        text_splitter = TokenTextSplitter(chunk_size=512, chunk_overlap=24)

        docs = text_splitter.split_documents(raw_docs[:3])

        return docs

对于每个块,我们开始将其转换为图文档的过程,并将其持久保存到底层的Neo4j实例。这就是我利用LLMGraphTransformer将纯文本块转换为图节点和边的地方。

1

2

3

4

5

6

7

8

9

10

11

12

13

14

1

def graph_document_text(self, text_chunks):

        """

        Uses experimental LLMGraphTransformer to convert unstructured text into a knowledge graph

 

        Args:

            text_chunks (List): List of document chunks

        """

        llm_transformer = LLMGraphTransformer(llm=self.llm)

 

        graph_docs = llm_transformer.convert_to_graph_documents(text_chunks)

        self.graph.add_graph_documents(

            graph_docs,

            baseEntityLabel=True,

            include_source=True

        )

这个过程会一直重复,直到所有来源文档中的所有块都被处理完。值得注意的一个有趣的点是**include_source=True**。这将在图中显示来源文档。这对后面的非结构化语义搜索步骤很有用。

最后,我在整个图中创建一个索引,以帮助进行高效的搜索。这一步必须在向图中添加所有新内容之后完成。

图检索器

图检索器是通过多个步骤构建的。以下是每个步骤的解释和代码。

首先要做的是提取用户问题中存在的实体。由于图是通过在边上将节点映射到彼此来运行的,按预期实体搜索是一种常见策略。用户的问题可能提到多个实体,可以像这样提取。注意:我们返回一个可运行的链以便稍后将此步骤与其他步骤链接起来。

接下来我将构建结构化数据检索器,它将生成一个图查询,以提取我们上面提取的实体的相关节点和关系。

这里发生的是,被识别的实体与图形查询合并,以便我们可以返回与这些实体相关的邻居和关系。这产生了一个非常精确的数据语料库,可用于回答用户的查询。

接下来,我将创建混合检索器的非结构化部分。记得我们在图中包含源文档的地方吗?现在我们可以利用这一点,直接从图中创建一个向量索引。

最后一步是将检索的两种方法合并在一起,并构建我们将发送给LLM的组合查询。组合查询将包括用户的混合检索器上下文和原始问题。

在构建混合GraphRAG实现方面,这就是它。要再进一步,我们应该真正添加一个可以以对话方式与图形交互的接口。

创建UI

由于Streamlit使得快速构建原型变得如此容易,让我们继续前进并做到这一点。用户界面分为两个部分:

  • 侧边栏 - 包含用于管理图形的控件 - 目前将从代码中包含的预填充 URL 读取

  • 主窗口 - 这是主要的聊天界面 - 用户可以提出问题,将模型的潜在知识与您提供的特定基于图形的知识相结合



Conclusion总结

让我们回顾一下:我们面临的主要问题是数据通常不是线性相关的,可能包含超越单个“跳跃”的有价值信息。解决这个“多跳”问题正是知识图谱的必要之处。它们提供了信息相互关联的更现实的表示,使我们能够相对容易地查询这种复杂性。手动构建这些图谱可能具有挑战性,但随着LLMs的出现,我们现在有能力有效地自动化这个过程。

通过开发混合检索器,我们可以有效地匹配和理解与用户查询相关的实体。这使我们能够提取相关节点和边,从而产生更丰富、更有见地的响应,捕捉到通常被基本RAG实现忽视的知识。完整的代码可在Github上找到。https://github.com/BrightJourneyAI/graph-rag

如何学习大模型 AI ?

由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。

但是具体到个人,只能说是:

“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。

这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。

我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。

我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。

在这里插入图片描述

第一阶段(10天):初阶应用

该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。

  • 大模型 AI 能干什么?
  • 大模型是怎样获得「智能」的?
  • 用好 AI 的核心心法
  • 大模型应用业务架构
  • 大模型应用技术架构
  • 代码示例:向 GPT-3.5 灌入新知识
  • 提示工程的意义和核心思想
  • Prompt 典型构成
  • 指令调优方法论
  • 思维链和思维树
  • Prompt 攻击和防范

第二阶段(30天):高阶应用

该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。

  • 为什么要做 RAG
  • 搭建一个简单的 ChatPDF
  • 检索的基础概念
  • 什么是向量表示(Embeddings)
  • 向量数据库与向量检索
  • 基于向量检索的 RAG
  • 搭建 RAG 系统的扩展知识
  • 混合检索与 RAG-Fusion 简介
  • 向量模型本地部署

第三阶段(30天):模型训练

恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。

到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?

  • 为什么要做 RAG
  • 什么是模型
  • 什么是模型训练
  • 求解器 & 损失函数简介
  • 小实验2:手写一个简单的神经网络并训练它
  • 什么是训练/预训练/微调/轻量化微调
  • Transformer结构简介
  • 轻量化微调
  • 实验数据集的构建

第四阶段(20天):商业闭环

对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。

  • 硬件选型
  • 带你了解全球大模型
  • 使用国产大模型服务
  • 搭建 OpenAI 代理
  • 热身:基于阿里云 PAI 部署 Stable Diffusion
  • 在本地计算机运行大模型
  • 大模型的私有化部署
  • 基于 vLLM 部署大模型
  • 案例:如何优雅地在阿里云私有部署开源大模型
  • 部署一套开源 LLM 项目
  • 内容安全
  • 互联网信息服务算法备案

学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。

如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。

这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费

在这里插入图片描述

  • 14
    点赞
  • 12
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值