在自然语言处理领域,如何有效处理长文本一直是一个挑战。传统的文本分块方法虽然简单直接,但往往会导致上下文信息的丢失。今天,将介绍一种名为"迟分"的创新技术,它不仅能够保留长文本的上下文信息,还能显著提升文本处理的质量。
传统方法的局限性
在讨论迟分之前,让先回顾一下传统的文本处理流程,特别是在检索增强生成(RAG)系统中:
-
分块:将长文本切割成小段
-
Embedding:对每个小段进行向量化
-
检索:根据查询找到相关的文本段
-
生成:基于检索结果生成回答
这种方法虽然广泛应用,但存在明显的缺陷:
-
上下文丢失:当关键信息分散在多个文本块中时,单独的文本段可能失去原有意义。
-
指代问题:像"它"、"这座城市"等指代词可能无法正确链接到其指向的实体。
-
语义不连贯:相邻的文本块之间可能缺乏语义连贯性。
迟分:重新思考文本处理流程
迟分技术提供了一种全新的思路来解决这些问题。它的核心理念是:先进行整体的语义理解,再进行文本分割。
迟分的工作流程
-
整体处理:将整个长文本(或尽可能长的文本段)输入到支持长上下文的Embedding模型中。
-
Token级Embedding:为文本中的每个token生成包含丰富上下文信息的向量表示。
-
后续分块:根据需要,对token级的向量序列进行分块和聚合,得到最终的文本块Embedding。
迟分的优势
-
保留上下文:每个文本块的Embedding都包含了整体文档的语义信息。
-
解决指代问题:模型能够更好地理解长距离的语义依赖关系。
-
提高检索精度:生成的Embedding更准确地反映了文本的语义内容。
实验验证
为了验证迟分的效果,进行了一系列实验:
定性评估
以维基百科上关于柏林的文章为例,比较了传统分块和迟分在处理指代关系时的表现:
查询块 | 传统分块相似性 | 迟分相似性 |
---|---|---|
柏林是德国的首都… | 0.849 | 0.850 |
其超过385万人口… | 0.708 | 0.825 |
这座城市也是德国的一个州… | 0.753 | 0.850 |
可以看到,迟分在处理指代词(如"其"、“这座城市”)时,显著提高了与"柏林"这个关键词的语义相似度。
BEIR基准测试
还在BEIR(一个检索基准测试集)上进行了更全面的评估。以下是部分数据集的nDCG@10指标比较:
数据集 | 文档平均长度 | 传统分块 | 迟分 | 无分块 |
---|---|---|---|---|
SciFact | 1498.4 | 64.20% | 66.10% | 63.89% |
TRECCOVID | 1116.7 | 63.36% | 64.70% | 65.18% |
FiQA2018 | 767.2 | 33.25% | 33.84% | 33.43% |
NFCorpus | 1589.8 | 23.46% | 29.98% | 30.40% |
结果显示,迟分在多数情况下都优于传统分块,特别是在处理较长文档时效果更为显著。
技术实现
要实现迟分,需要以下关键组件:
-
长上下文Embedding模型:如jina-embeddings-v2-base-en,支持处理长达8192个token的文本。
-
边界线索提取:使用正则表达式或其他方法识别合适的分块点。
-
Token级Embedding聚合:对生成的token级向量进行平均池化等操作,得到块级Embedding。
结论与展望
迟分技术为长文本处理带来了新的可能性。它不仅解决了传统方法中的上下文丢失问题,还显著提升了文本处理的质量和准确性。随着文档长度的增加,迟分的优势更加明显。
这项技术的成功,再次证明了长上下文Embedding模型的重要性。期待看到更多基于迟分的创新应用,以及它在各种NLP任务中的表现。
未来,将继续优化迟分技术,探索其在更复杂场景下的应用,如多语言处理、跨模态任务等。也鼓励社区参与到这项技术的研究和应用中来,共同推动NLP技术的发展。
如何学习大模型 AI ?
由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。
但是具体到个人,只能说是:
“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。
这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。
我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。
我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。
第一阶段(10天):初阶应用
该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。
- 大模型 AI 能干什么?
- 大模型是怎样获得「智能」的?
- 用好 AI 的核心心法
- 大模型应用业务架构
- 大模型应用技术架构
- 代码示例:向 GPT-3.5 灌入新知识
- 提示工程的意义和核心思想
- Prompt 典型构成
- 指令调优方法论
- 思维链和思维树
- Prompt 攻击和防范
- …
第二阶段(30天):高阶应用
该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。
- 为什么要做 RAG
- 搭建一个简单的 ChatPDF
- 检索的基础概念
- 什么是向量表示(Embeddings)
- 向量数据库与向量检索
- 基于向量检索的 RAG
- 搭建 RAG 系统的扩展知识
- 混合检索与 RAG-Fusion 简介
- 向量模型本地部署
- …
第三阶段(30天):模型训练
恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。
到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?
- 为什么要做 RAG
- 什么是模型
- 什么是模型训练
- 求解器 & 损失函数简介
- 小实验2:手写一个简单的神经网络并训练它
- 什么是训练/预训练/微调/轻量化微调
- Transformer结构简介
- 轻量化微调
- 实验数据集的构建
- …
第四阶段(20天):商业闭环
对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。
- 硬件选型
- 带你了解全球大模型
- 使用国产大模型服务
- 搭建 OpenAI 代理
- 热身:基于阿里云 PAI 部署 Stable Diffusion
- 在本地计算机运行大模型
- 大模型的私有化部署
- 基于 vLLM 部署大模型
- 案例:如何优雅地在阿里云私有部署开源大模型
- 部署一套开源 LLM 项目
- 内容安全
- 互联网信息服务算法备案
- …
学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。
如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。