摘要
通用大语言模型凭借其卓越的自然语言处理和对数据、知识、模型等融合的能力,在知识问答、报告生成、智能治理等方面展现出巨大的应用潜力,是赋能城市交通生产力提升的重要技术。当前,城市交通领域大模型的应用研究整体上处于早期探索阶段,面临领域知识完备性、复杂场景适应性、可解释性等挑战,需加强跨领域知识融合、复杂任务推理、模型可解释性提升等方面的研究。本文在梳理了国内外研究现状基础上,从决策支持视角提出了知识增强的城市交通领域大模型系统架构,在前期大规模知识图谱积累的基础上,构建了检索增强生成、大小模型融合及智能体构建技术,研发了知识增强的城市交通领域大模型(TransKG-LLM),并从数据增强、知识增强、模型增强及任务增强等4个维度进行了实践探索。研究成果可为城市交通领域大模型研发和应用提供参考。
1.研究背景
大语言模型是生成式人工智能领域(Generative Artificial Intelligence, GAI)的重要分支,是新质生产力的关键技术。自 2022 年底OpenAI的ChatGPT推出以来,便在全球学术界与产业界引发广泛关注,大模型在自然语言处理任务上展现出的“涌现”与“泛化”能力,促使各个行业领域也展开积极探索。然而通用大模型由于在预训练过程中缺少大量行业高质量文本数据,在垂直领域应用过程中普遍存在“幻觉”现象。行业领域的应用探索,一般基于通用大模型,采用预训练、微调等内部优化方法和提示词、检索增强生成等外部优化方法。内部优化的技术路线对技术能力、数据和计算资源要求高,开发难度大;外部优化的技术路线则注重行业领域数据、知识资源的融合,并结合场景需求实现研发的快速迭代,可以加速领域大模型的应用落地。
尽管大模型在行业领域应用潜力大,但在城市交通的应用尚处于前期探索阶段。大模型应用于城市交通领域如何从知识工程入手,将大模型和城市交通领域知识融合,以增强其在城市交通领域的适应性,是推进大模型在城市交通领域应用的重要研究内容,目前面临多重挑战:1)在文本数据方面,和医疗、金融等领域相比,城市交通在文本数据分析领域的前期积累少,特别是开源的语料库少;2)在知识组织方面,因其跨学科、跨场景的特性,多维空间语义信息的理解与分析成为关键难题,缺少相应的结构化知识语义网络,如知识图谱;3)在模型融合方面,如何利用大模型的泛化能力增强其在特定领域的专业性,领域大语言模型与交通专业模型的融合机制尚缺少研究;4)在应用任务增强方面,如何构建并优化由多个基于大模型的智能体组成的系统,实现智能体之间的信息交互、任务协同及评估,目前仍是有待解决的问题。
2. 研究现状
2.1 通用大模型发展态势
从大模型的发展历程看,可以分为统计语言模型、神经网络语言模型、预训练语言模型和大语言模型四个阶段 (见图1)。早期的统计语言模型多采用统计方法来预测单词序列概率;神经网络语言模型则通过构建神经网络,将单词转换为词向量来进行预测。2017年,Vaswani等人提出的Transformer模型是语言模型发展重要的里程碑,通过自注意力机制和并行计算的优势,能够更好地处理长距离依赖关系,提高了模型的训练和推理效率。2020年,OpenAI推出的GPT-3模型的参数规模达到1750亿个参数,其强大的“涌现”能力,标志着进入了大语言模型阶段。
2022年末ChatGPT发布,大模型进入公众视野。近年来正逐步从文本向图片、视频等多模态融合方向发展(见图2),对现实世界的理解与创造能力得到显著增强,例如LLaVA模型、GPT-4多模态大模型、Sora文生视频大模型等。随着大模型在医疗、金融、交通等垂直领域的应用探索,因其训练文本知识结构、知识更新速度、训练成本等原因,在垂直领域的表现不尽如人意,存在较为明显的“幻觉”现象。
图1 语言模型发展历程
图2 大模型演化历程
2.2 领域大模型研究现状
领域大模型是指特定领域内,通过训练得到的具有高度专业化能力的大模型。领域大模型一般基于通
用大模型进行训练优化,可以分为内部优化和外部优化两个技术路线。 1)内部优化:通过改变大模型参数(如权重)来增强其在特定领域任务上的表现,主要包括预训练及微调两种方式。2)外部优化:不直接更新大模型参数,通过引入外部知识库或工具来优化大模型在垂直领域的性能, 主要包括:提示词工程、检索增强生成(Retrieval Augmented Generation, RAG)、模型融合、智能体等。
内部优化方法可以提升通用大模型在垂直领域的性能,但也存在训练数据量大、成本较高及知识更新慢等问题。而外部优化具有知识更新快、可解释性强、成本低等特点,更易发挥领域知识的积累,近年来在领域大模型研发方面得到广泛关注。领域大模型内外部性能优化方法在领域数据、建设成本、数据安全和输出可控性方面的性能对比如图3所示。
图3 领域大模型内外部性能优化方法对比分析
3. 模型架构
3.1 融入大模型的决策模式及决策支持方法
决策支持系统自20世纪70年代被提出以来,在多个行业领域得到广泛应用。按照驱动要素,决策支持系统的发展可以分为经验判断、模型驱动、数据驱动和人工智能驱动四个阶段(见表1)。
表1 决策支持系统发展阶段
融入大模型的决策支持系统,在决策模式和系统性能方面有较为显著的变化和提升(见图4)。
1)在决策模式方面,由于大模型具备复杂情境理解、推理与方案生成能力,可以显著减少决策分析人员的工作。现状的决策模式是“决策者-决策分析人员-决策对象”的三层结构,融入大模型后,针对较为简单且程序化的决策需求,决策者可以直接通过大模型进行交互;针对复杂问题,仍可采取三层结构逻辑,但大模型也可以有效赋能决策分析人员。融入大模型后,决策模式由现有的三层结构,转变两层半的结构,而且随着大模型的内外部调优,可以逐渐成为决策信息的辅助制定者、执行者、反馈者与评估者,能够极大地提升决策支持的能力和效率。
2)在决策支持系统构架方面,针对传统的数据库、案例库、模型库和任务库,大模型可以显著增强系统性能。在数据增强方面,引入的大量文本数据有效弥补了传统关系型数据库的不足,通过筛选领域数据集以构建面向城市交通领域知识资源底座;在知识增强方面,通过构建知识图谱将行业知识体系化;在大模型内外部知识库的支撑下,增强检索覆盖面与生成内容的相关性;在模型增强方面,通过对城市交通专业模型的融合以强化对领域场景的理解、执行与反馈;在任务增强方面,大模型能够通过构建思维链,将复杂任务拆解为若干子问题,引导大模型逐步求解,提高了决策的准确度与可解释性。此外,大模型多智能体能够模拟真实世界中的多主体决策过程,并借助对话协同机制,在多轮迭代中不断增强决策结果的可解释性与可信度。
图4 大模型在决策支持系统的定位和作用
3.2 知识增强的城市交通领域大模型系统架构
知识增强的城市交通领域大模型的系统架构如下图所示,大模型在城市交通领域落地的关键在于数据利用、信息检索、推理能力提升,融合专业模型与实时工具,形成智能体提升生产力。在数据方面主要侧重文本数据处理,并和现有的结构化数据进行融合;在知识方面,是在前期知识图谱的基础上,结合知识表征、评价等方面的工作,生成可信、可解释的结果;模型增强主要是大语言模型和现有的行业模型的融合;智能体主要是针对具体场景问题进行智能体设计和协同。
图5 知识增强的城市交通领域大模型系统架构
4. 应用探索
在前期大规模知识图谱积累的基础上,探索提示词工程、检索增强生成、模型融合及智能体构建技术,自主研发了知识增强的城市交通领域大语言模型(Knowledge-Enhanced LLM for Urban Transportation, TransKG-LLM),并从数据增强、知识增强、模型增强及任务增强4个维度进行了实践探索。
图6 城市交通领域大模型应用场景及研发难度对比
4.1 数据增强:融合多源数据的城市交通领域知识图谱构建
多源数据融合是解决数据孤岛、提升数据价值的关键。而知识图谱具备较强的知识组织与表示能力,为城市交通领域数据融合提供了新技术路径。其技术实现主要包括:本体设计、知识抽取、知识融合、知识推理等任务(见图7)。
图7 城市交通领域知识图谱构建示意
4.2 知识增强:融合知识图谱与通用大模型的交通行业知识问答
知识增强是通过知识图谱系统组织和呈现本领域实体之间复杂关系的过程,应用结构化的知识语义网络,使大模型生成过程可控及生成结果可信。本文针对通用大模型在领域应用中如何消除“幻觉”的挑战,构建领域知识图谱和通用大模型相融合的知识问答系统,以更有效地服务行业知识问答需求。其技术实现主要包括知识表证、知识检索、知识输出及知识更新4个部分(见图8)。
图8 城市交通行业知识问答
4.3 模型增强:城市出行规划智能助手
模型增强是基于大模型的泛化能力,嵌入小模型的行业知识与业务理解能力,实现大模型面向具体交通场景的分析与应用。以交通规划中的出行特征分析为例,文本利用大小模型融合的方法,研发了城市出行规划智能助手(见图9)。
图9 城市出行规划智能助手
4.4 任务增强:基于多智能体的教学智能助手
任务增强是以领域任务为导向,通过大模型的多智能体协同框架实现多个智能体间信息交互、任务联动,使其具备解决领域任务的能力。本文以交通工程课程为例,设计了教学、考核等多智能体及其协作机制,研发了课程智能教学助手(见图10),具体内容可参见上一篇公众号推文。
图10 课程教学智能助手
如何学习大模型 AI ?
由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。
但是具体到个人,只能说是:
“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。
这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。
我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。
我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。
第一阶段(10天):初阶应用
该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。
- 大模型 AI 能干什么?
- 大模型是怎样获得「智能」的?
- 用好 AI 的核心心法
- 大模型应用业务架构
- 大模型应用技术架构
- 代码示例:向 GPT-3.5 灌入新知识
- 提示工程的意义和核心思想
- Prompt 典型构成
- 指令调优方法论
- 思维链和思维树
- Prompt 攻击和防范
- …
第二阶段(30天):高阶应用
该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。
- 为什么要做 RAG
- 搭建一个简单的 ChatPDF
- 检索的基础概念
- 什么是向量表示(Embeddings)
- 向量数据库与向量检索
- 基于向量检索的 RAG
- 搭建 RAG 系统的扩展知识
- 混合检索与 RAG-Fusion 简介
- 向量模型本地部署
- …
第三阶段(30天):模型训练
恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。
到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?
- 为什么要做 RAG
- 什么是模型
- 什么是模型训练
- 求解器 & 损失函数简介
- 小实验2:手写一个简单的神经网络并训练它
- 什么是训练/预训练/微调/轻量化微调
- Transformer结构简介
- 轻量化微调
- 实验数据集的构建
- …
第四阶段(20天):商业闭环
对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。
- 硬件选型
- 带你了解全球大模型
- 使用国产大模型服务
- 搭建 OpenAI 代理
- 热身:基于阿里云 PAI 部署 Stable Diffusion
- 在本地计算机运行大模型
- 大模型的私有化部署
- 基于 vLLM 部署大模型
- 案例:如何优雅地在阿里云私有部署开源大模型
- 部署一套开源 LLM 项目
- 内容安全
- 互联网信息服务算法备案
- …
学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。
如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。