RAG搭建中,如何选择最合适的向量索引?

LLM领域大热的两个概念:RAG和Agent,都需要用到向量数据库,比如RAG中需要把知识库向量化之后存在向量数据库中,Agent中也需要将memory存储在外部存储器中。Milvus支持多种向量索引算法,这些算法各自基于不同的原理,旨在优化存储效率和搜索效率,满足不同应用场景的需求。

本文将深入探讨Milvus所支持的几种主要向量索引的原理,包括它们的工作机制、优势以及适用场景,以帮助读者更好地理解和选择适合自己需求的索引方案。

01.ANNS

在处理高维数据时,最近邻搜索(NNS, Nearest Neighbor Search)是一个常见且重要的任务。NNS旨在通过给定的查询向量,快速找到数据集中最相似的若干个向量。这在图像检索、推荐系统、语音识别等应用中具有广泛的需求。然而,随着数据规模的增大,精确的最近邻检索通常会变得非常耗时和资源密集。因此,近似最近邻搜索(ANNS, Approximate Nearest Neighbor Search)应运而生。

ANNS的核心思想是在可接受的精度范围内,牺牲部分准确性,换取更高的检索效率。相比于精确检索,ANNS只需要找到目标向量的近似邻居,而不是完全精确的邻居,从而在大规模数据集上大幅提升查询速度。Milvus 支持的向量索引类型大多采用ANNS算法,常见的索引类型的划分如下图所示:

02.FLAT

这是最简单的索引方式,进行暴力搜索(brute-force),可以保证精确度,但效率低,尤其在数据量大时。适合场景:在小型、百万级数据集上寻求完全精确的搜索结果。

03.IVF_FLAT

IVF_FLAT 是一种基于倒排的索引方法,广泛用于在大规模数据集上实现高效的近似最近邻搜索。它适用于在精度和查询速度之间寻求平衡的场景。IVF_FLAT本身并没有进行量化操作,因此在精度和存储开销上相对保守,但能够提供较快的搜索速度。

3.1 核心原理

1. 聚类:IVF_FLAT通过聚类算法(如k-means)将高维空间中的向量划分为多个子空间(簇)。每个簇包含一组相似的向量,并且每个簇会有一个代表向量,通常是簇的中心点。

2. 倒排索引:为每个簇创建倒排索引。每个向量会被映射到它所属的簇,这样在查询时,系统只需关注与查询向量相似的簇,而不需要搜索整个高维空间,从而显著降低搜索的时间复杂度。

3. 查询处理

  • 查询时,IVF_FLAT首先将查询向量分配到距离最近的簇中心(即子空间)。

  • 然后在该簇内执行精确的线性搜索,从而查找与查询向量相似的向量。

  • 为了优化查询,IVF_FLAT使用一个参数 nprobe 来控制搜索的簇数。nprobe 控制搜索时考虑的簇的数量,从而平衡查询精度和查询速度:

  • 增大 nprobe 可以搜索更多簇,返回更多候选向量,提高结果的精确度,但查询时间也会增加。

  • 减少 nprobe 可以缩小搜索范围,降低计算时间,查询速度更快,但可能会牺牲一些精度。

  • 降低搜索成本:由于IVF_FLAT通过划分子空间来限制搜索范围,它能够显著减少传统线性搜索所带来的高维数据中的计算开销,从而提高查询效率。与传统的暴力搜索方法相比,IVF_FLAT的时间复杂度大大降低,尤其适合在大规模数据集上使用。

3.2 适用场景

IVF_FLAT适用于需要平衡精度和查询速度的场景,尤其是在大规模、高维数据集上,可以有效减少查询时间。它适合那些要求较高精度但能容忍一定查询延迟的应用。

04.IVF_SQ8

IVF_SQ8 是在 IVF_FLAT 基础上增加了量化步骤的一种索引方法,其核心思想与 IVF_FLAT 类似,但通过量化技术将存储和计算资源的消耗大大降低,尤其在磁盘、内存、CPU 和 GPU 资源的使用上节省了 70%-75%。IVF_SQ8通过标量量化(Scalar Quantization)将每个维度的 4 字节浮点数表示压缩为 1 字节整数表示。

4.1 核心原理

1. 标量量化:IVF_SQ8 通过标量量化将每个向量的每个维度从 4 字节(通常是浮点数)压缩为 1 字节。量化的过程是将原始的浮点数值映射到一个较小的整数范围。例如,假设一个维度的原始值范围是 [0.0, 1.0],通过量化后,该维度的数值会被压缩为整数值,这样可以显著节省存储空间并加速计算。

2. Quantized Vectors:量化后的向量使用整数(如 uint8)来表示每个维度的值。通过量化,向量的存储空间大大减少,同时查询时计算量也降低。量化后的整数表示会根据原始值的分布划分为若干个区间。

3. 倒排索引与聚类:与 IVF_FLAT 类似,IVF_SQ8 使用聚类算法(如 k-means)将高维空间中的向量划分为多个簇。每个簇内的向量都通过量化后的表示存储和检索。查询时,系统会将查询向量分配到与其最接近的簇中心,然后在该簇内执行快速的线性搜索。

05.IVF_PQ

IVF_PQ 是一种结合了倒排文件和乘积量化(Product Quantization, PQ)的高效索引方法,旨在加速大规模高维数据集的检索过程。它主要用于高维向量的近似最近邻搜索,通过将向量空间划分为更小的子空间并进行量化,显著降低了存储开销和计算复杂度。

  1. 倒排文件

倒排文件是一种高效的索引结构,用于存储和检索向量。在IVF_PQ中,数据集中的每个向量被分配到一个或多个倒排表中,每个表包含了对应向量的标识符。查询时,我们首先在倒排文件中找到候选的向量集合,从而大大减少了搜索空间。倒排文件特别适合于高维空间,因为它允许我们仅搜索与查询向量相似的部分数据,而不是遍历整个数据集。

2. 乘积量化(PQ)

乘积量化是一种将高维向量压缩为低维表示的技术。它通过将向量划分为多个子空间,并对每个子空间进行独立的量化,生成一个代码本(codebook)。这样,原始的高维向量可以由多个子空间的量化表示组合而成,从而降低存储需求并加速检索。

在IVF_PQ中,乘积量化应用于IVF的聚类过程。每个簇的中心点会被进一步量化,原始的查询向量和数据向量在计算距离时,不是直接与每个簇中心进行计算,而是与每个子空间的量化中心进行计算。这种方法不仅降低了存储开销,还减少了计算距离时的运算量。

3. IVF_PQ的结合

IVF_PQ将倒排文件和乘积量化结合在一起,利用两者的优势来加速高维向量检索。具体流程如下:

  • 量化与聚类:首先,数据集中的每个向量会被分为多个子空间,每个子空间进行乘积量化。接着,通过倒排文件将数据按簇组织。

  • 查询流程

  • 查询时,首先根据查询向量找到相应的倒排表(即查询向量属于哪个簇)。

  • 然后,在该簇内,使用乘积量化后的代码本来进行相似度计算,找到与查询向量最相似的向量。

这样,通过倒排文件限制搜索范围,并通过乘积量化精简计算过程,IVF_PQ大大提高了大规模数据集上相似向量检索的效率。

06.HNSW

HNSW(Hierarchical Navigable Small World Graph)是一种基于图的索引算法,采用分层结构和小世界图理论,旨在高效地进行近似最近邻搜索。它通过构建一个多层次的图结构,其中每一层的节点连接关系不同,逐层精细化,从而提高高维数据集的搜索效率。

6.1 图的结构

HNSW的图结构结合了两种技术:跳表(Skip List)和可导航小世界(NSW)图。

跳表特点:

  • 多层链表:跳表的底层是一个完整的有序链表,存储所有元素。上层链表是下层链表的“抽象版”,包含部分元素,随着层数增加变得更加稀疏。

  • 逐层查找:查询时,从最上层开始查找,如果当前层无法找到目标元素,则跳到下一层继续查找,直到最底层。

可导航小世界(NSW)特点

  • 邻接列表:每个节点连接若干相似节点,称为邻接节点。每个节点都保存一个邻接列表。

  • 遍历过程:从随机选定的入口节点开始,通过图的边逐步找到最接近查询向量的节点。

6.2 HNSW的工作原理

HNSW将跳表的层次化结构与NSW的小世界理论结合起来,形成了一个高效的近似最近邻搜索算法。其工作分为两个主要阶段:索引构建和查询过程。

索引构建:

  • 图的层次结构:HNSW构建一个多层图,每一层代表不同的搜索精度和速度。最上层图的节点较少,提供粗粒度的搜索;而底层节点则提供更精细的搜索,逐层提升搜索精度。

  • 连接邻居:每个新加入的节点会选择若干个近邻节点进行连接,从而形成一个局部的小世界结构。通过选择性地建立邻接关系,确保了图的稀疏性和高效搜索。

查询过程:

  • 逐层搜索:查询从最上层图开始,逐层向下进行。每一层会根据相似度从当前节点跳到相邻节点,逐步逼近目标位置。此时,查询会通过图中的边,利用跳表的方式,逐步接近查询向量。

  • 局部优化:在最底层,HNSW通过局部搜索策略,遍历当前节点的邻接节点,找到最接近查询向量的结果。

07.DiskANN

之前已经有 Zilliz 的同学写过一篇关于 DiskANN 论文的相关文章_(https://zhuanlan.zhihu.com/p/394393264)_,感兴趣的朋友可以了解一下。

DiskANN是一种基于磁盘的高性能向量近邻搜索算法,旨在解决大规模向量数据检索中的内存消耗问题。通过将轻量级的索引结构置于内存中,而将海量的原始数据和构建好的图结构存放在磁盘上,DiskANN能够在保持高召回率和低时延的同时,大幅减少对内存资源的依赖。

DiskANN的优势:

  • 与基于内存的算法相比:如HNSW和IVF,DiskANN在资源消耗和可扩展性上有明显优势,能够在更低的资源消耗下提供相似的查询性能。

  • 与基于聚类压缩的算法相比:如IVF_PQ,DiskANN在召回率和性能上保持高效,同时避免了因压缩而导致的召回率降低

总结与建议

向量索引技术在大规模、高维度的非结构化数据检索中扮演了至关重要的角色。通过多种创新算法,不同场景中的检索效率得到了显著提升。这些索引技术有效解决了传统方法在处理海量数据时的局限,支持了高效的近似最近邻(ANN)搜索,尤其在LLM、推荐系统、多模态搜索等领域表现出巨大的应用潜力。

然而,选择合适的向量检索方式依赖于具体的应用需求和数据特性,需要在性能和效率之间取得平衡,下图是一些建议:

如何学习大模型 AI ?

由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。

但是具体到个人,只能说是:

“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。

这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。

我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。

我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。

在这里插入图片描述

第一阶段(10天):初阶应用

该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。

  • 大模型 AI 能干什么?
  • 大模型是怎样获得「智能」的?
  • 用好 AI 的核心心法
  • 大模型应用业务架构
  • 大模型应用技术架构
  • 代码示例:向 GPT-3.5 灌入新知识
  • 提示工程的意义和核心思想
  • Prompt 典型构成
  • 指令调优方法论
  • 思维链和思维树
  • Prompt 攻击和防范

第二阶段(30天):高阶应用

该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。

  • 为什么要做 RAG
  • 搭建一个简单的 ChatPDF
  • 检索的基础概念
  • 什么是向量表示(Embeddings)
  • 向量数据库与向量检索
  • 基于向量检索的 RAG
  • 搭建 RAG 系统的扩展知识
  • 混合检索与 RAG-Fusion 简介
  • 向量模型本地部署

第三阶段(30天):模型训练

恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。

到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?

  • 为什么要做 RAG
  • 什么是模型
  • 什么是模型训练
  • 求解器 & 损失函数简介
  • 小实验2:手写一个简单的神经网络并训练它
  • 什么是训练/预训练/微调/轻量化微调
  • Transformer结构简介
  • 轻量化微调
  • 实验数据集的构建

第四阶段(20天):商业闭环

对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。

  • 硬件选型
  • 带你了解全球大模型
  • 使用国产大模型服务
  • 搭建 OpenAI 代理
  • 热身:基于阿里云 PAI 部署 Stable Diffusion
  • 在本地计算机运行大模型
  • 大模型的私有化部署
  • 基于 vLLM 部署大模型
  • 案例:如何优雅地在阿里云私有部署开源大模型
  • 部署一套开源 LLM 项目
  • 内容安全
  • 互联网信息服务算法备案

学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。

如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。

这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费

在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值