【Waymo】自动驾驶中利用强化学习微调来改进智能体行为

  • 论文链接:https://arxiv.org/pdf/2409.18343

摘要

本文介绍了自动驾驶中利用强化学习微调来改进智能体行为。自动驾驶汽车研究的一个主要挑战是对智能体行为进行建模,这具有关键的应用,包括为非车载评估构建逼真且可靠的仿真以及为车载规划预测交通智能体运动。尽管监督学习已经在跨不同领域建模智能体方面取得了成功,但是这些模型在测试部署时可能会受到分布偏移的影响。本项工作通过使用强化学习对行为模型进行闭环微调来提高智能体行为的可靠性。本文方法在Waymo Open Sim Agents挑战赛中展现了整体性能的提高以及碰撞率等目标指标的改进。此外,本文还提出了一种新的策略评估基准,以直接评估仿真智能体衡量自动驾驶汽车规划器质量的能力,并且证明了本文方法在这个新基准上的有效性。

主要贡献

本文的主要贡献总结如下:

1)本文提出将常用于大型语言模型(LLMs)的主流“预训练和强化学习微调”范式应用于自动驾驶行为建模问题,证明了在Waymo Open Motion Dataset(WOMD)上闭环微调基于Transformer的架构的有效性;

2)本文证明,具有简单奖励函数的on-policy强化学习算法可以成功地保留数据集中的真实性,同时使人类对安全性和可靠性的偏好保持一致;

3)为了更好地评估仿真智能体模型的性能,本文提出了一种新的规划器评估任务,并且证明了本文方法可以在评估AD规划器的能力方面显著提升仿真智能体模型的性能。

论文图片和表格

总结

本文研究了将主流的“预训练和微调”方案应用于建模AD仿真交通智能体的可行性。本文将多智能体驾驶行为模型和仿真环境联系起来——多智能体行为模型本身可用于为闭环训练执行rollouts。本文通过使用一种具有简单奖励的on-policy强化学习算法,能够微调预训练的大型多智能体行为模型,以有效地使交通智能体行为与人类期望(例如避障)保持一致。实验结果表明,本文方法可以显著提高预训练模型在Waymo Open Sim Agent挑战赛(WOSAC)中的性能。此外,本文还提出了一种新的策略评估任务,并且证明了通过本文方法微调的模型可以获得更可靠的AD测试结果。

局限性:本文讨论的方法存在若干局限性。本文使用简单的转移和行为模型(基于预测加速度并且结合它们来估计位置)作为环境动态模型,这可能会在rollout过程中产生运动学上不切实际的行为。一种更现实的解决方案是在仿真中嵌入一个低级控制器,试图达到模型预测的位置。此外,本文研究了一种奖励函数,它鼓励避障并且最小化闭环仿真中的差异。奖励函数可以扩展以引起各种驾驶行为,例如鼓励对抗行为来对具有挑战性的场景进行压力测试。

如何学习大模型 AI ?

由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。

但是具体到个人,只能说是:

“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。

这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。

我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。

我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。

在这里插入图片描述

第一阶段(10天):初阶应用

该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。

  • 大模型 AI 能干什么?
  • 大模型是怎样获得「智能」的?
  • 用好 AI 的核心心法
  • 大模型应用业务架构
  • 大模型应用技术架构
  • 代码示例:向 GPT-3.5 灌入新知识
  • 提示工程的意义和核心思想
  • Prompt 典型构成
  • 指令调优方法论
  • 思维链和思维树
  • Prompt 攻击和防范

第二阶段(30天):高阶应用

该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。

  • 为什么要做 RAG
  • 搭建一个简单的 ChatPDF
  • 检索的基础概念
  • 什么是向量表示(Embeddings)
  • 向量数据库与向量检索
  • 基于向量检索的 RAG
  • 搭建 RAG 系统的扩展知识
  • 混合检索与 RAG-Fusion 简介
  • 向量模型本地部署

第三阶段(30天):模型训练

恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。

到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?

  • 为什么要做 RAG
  • 什么是模型
  • 什么是模型训练
  • 求解器 & 损失函数简介
  • 小实验2:手写一个简单的神经网络并训练它
  • 什么是训练/预训练/微调/轻量化微调
  • Transformer结构简介
  • 轻量化微调
  • 实验数据集的构建

第四阶段(20天):商业闭环

对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。

  • 硬件选型
  • 带你了解全球大模型
  • 使用国产大模型服务
  • 搭建 OpenAI 代理
  • 热身:基于阿里云 PAI 部署 Stable Diffusion
  • 在本地计算机运行大模型
  • 大模型的私有化部署
  • 基于 vLLM 部署大模型
  • 案例:如何优雅地在阿里云私有部署开源大模型
  • 部署一套开源 LLM 项目
  • 内容安全
  • 互联网信息服务算法备案

学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。

如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。

这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费

在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值