近年来,咱们想要发文,卷的趋势统统在向联合思路走,而我们老朋友Meta分析也搭上了干湿结合的路子,我们经常做Meta分析的宝子都知道,他有多火,峰哥搜索PubMed发现,截至目前,Meta分析文章总发表量超33万篇,仅过去的一年里就发表了3.7万篇!所以不要相信别人说的什么Meta不香啦,要不然等到人家拿着文章摆在你面前才知道谁是loser!不过现在做Meta分析确实也需要一点新花样才能冲高分!
今天给大家带来的这篇文章是香港大学李嘉诚医学院研究团队刚发表在柳叶刀子刊上的,是什么让它受到青睐的呢?峰哥来分析一下:
1.数据量巨大:是到目前为止最大的跨血统之间的GWAS荟萃分析,样本量可是有8000+!这数据量谁看了不得说一句牛!还发现了新的关联位点,
2.联合分析:通常我们看到的Meta分析都是制作分析,而本文综合了Meta分析+单细胞测序分析+湿实验验证,打破了传统Meta的框架,虽说这里的实验只能为了验证咱们的候选基因在ENS发育中的功能。单纯打了个辅助,但是依旧得分呀!
所以,别再说Meta不香啦!JAMA、Lancet 等顶刊依旧在发!就是现如今的Meta分析,已经是钮钴禄Meta了!拿下高分就需要加一些联合手段增加亮点了,什么机器学习、网络分析和基因组学都可以有机结合呀!如果对Meta分析感兴趣想加到自己的研究,但在框架搭建上有bug的家人们,峰哥会出手!从设计到分析,一步到位!
题目:多血统全基因组关联荟萃分析确定了新的关联并为先天性巨结肠的遗传风险预测提供了信息
研究背景
赫什朋病(Hirschsprung disease, HSCR)是一种先天性肠道神经节缺失的罕见疾病,其遗传机制复杂,涉及罕见变异和常见变异的共同作用。已有研究识别出3个相关基因,但仍无法解释更多遗传性和不同种族间存在的显著遗传异质性。本研究旨在扩大GWAS研究样本量进行跨种族的综合分析探索在易感位点和病理机制。
研究思路
数据整合与分析:
整合7项已发表的GWAS数据(1250例患者+7140例对照),进行多祖先、欧洲和东亚特异性元分析,提升统计效力。
候选基因筛选与验证:
通过功能注释(eQTL、染色质互作)和基因优先排序(ToppGene)筛选候选基因。利用数据库中人类和小鼠胚胎肠道的单细胞转录组数据,分析基因时空表达模式。然后通过体内外实验验证候选基因的功能。
多基因风险评分(PRS)构建:
最终开发跨种族适用的PRS模型,并评估其在风险预测中的性能。
看看这个清晰的思路框架,跟各位家人说,Meta分析最重要的是先搭建好框架!家人们想要换个主角Meta的或者有生信分析、课题思路制定的需求,**一定要来找峰哥,专业团队,发文不愁!
研究结果
**1.**新发现易感位点
共识别到4个新的HSCR关联位点:JAG1(NOTCH信号配体)、HAND2(神经嵴细胞分化转录因子)、ZNF25(欧洲特异性低频变异)、UNC5C(netrin受体),前三个都达到了全基因组显著性。
**2.**功能验证
单细胞测序分析,HSCR相关基因在肠神经系统(ENS)谱系细胞(神经嵴细胞、神经元)和FRZB成纤维细胞中富集,提示间质-神经互作的重要性。
体内外实验验证发现,敲低HAND2和ZNF25会明显抑制神经母细胞瘤细胞的迁移,敲除hand2、jag1a、unc5c等基因会导致斑马鱼肠道神经元密度明显降低。
综合机制结论,NOTCH信号(JAG1)可能通过维持神经嵴前体细胞状态影响ENS发育,NTN1/UNC5C信号在兴奋性神经元分化中起补充作用,与RET通路独立。
**3.**遗传异质性
RET和NRG1位点存在种族间效应异质性,SEMA3D和ZNF25为欧洲特异性关联。
**4.**多基因风险评分(PRS)
基于11个独立关联变异的跨种族PRS模型的表现优于以往的4-SNP模型,且在短段型、长段型HSCR等不同亚型均适用。
如何学习大模型 AI ?
由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。
但是具体到个人,只能说是:
“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。
这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。
我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。
我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。
第一阶段(10天):初阶应用
该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。
- 大模型 AI 能干什么?
- 大模型是怎样获得「智能」的?
- 用好 AI 的核心心法
- 大模型应用业务架构
- 大模型应用技术架构
- 代码示例:向 GPT-3.5 灌入新知识
- 提示工程的意义和核心思想
- Prompt 典型构成
- 指令调优方法论
- 思维链和思维树
- Prompt 攻击和防范
- …
第二阶段(30天):高阶应用
该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。
- 为什么要做 RAG
- 搭建一个简单的 ChatPDF
- 检索的基础概念
- 什么是向量表示(Embeddings)
- 向量数据库与向量检索
- 基于向量检索的 RAG
- 搭建 RAG 系统的扩展知识
- 混合检索与 RAG-Fusion 简介
- 向量模型本地部署
- …
第三阶段(30天):模型训练
恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。
到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?
- 为什么要做 RAG
- 什么是模型
- 什么是模型训练
- 求解器 & 损失函数简介
- 小实验2:手写一个简单的神经网络并训练它
- 什么是训练/预训练/微调/轻量化微调
- Transformer结构简介
- 轻量化微调
- 实验数据集的构建
- …
第四阶段(20天):商业闭环
对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。
- 硬件选型
- 带你了解全球大模型
- 使用国产大模型服务
- 搭建 OpenAI 代理
- 热身:基于阿里云 PAI 部署 Stable Diffusion
- 在本地计算机运行大模型
- 大模型的私有化部署
- 基于 vLLM 部署大模型
- 案例:如何优雅地在阿里云私有部署开源大模型
- 部署一套开源 LLM 项目
- 内容安全
- 互联网信息服务算法备案
- …
学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。
如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。