导读
在AI技术飞速发展的今天,大语言模型(LLM)的应用越来越广泛。然而,本地运行这些模型,尤其是像DeepSeek-R1这样的大模型,往往需要高性能的硬件支持,这让许多开发者和研究人员望而却步。
今天,我们为大家推荐一款由清华大学 MADSys 和 Approaching.AI 专为优化大模型本地推理体验而设计的开源框架–KTransformers。它支持在单卡24GB VRAM的GPU上运行满血版的DeepSeek-R1,性能提升高达27.79倍!
这篇文章将带您深入了解KTransformers的强大功能,以及如何轻松上手。
KTransformers是什么?
KTransformers是一个基于Python的开源框架,专注于优化大模型的本地推理体验。它通过先进的内核优化和灵活的硬件配置策略,让开发者能够在有限的资源下实现高效的模型推理,并提供了与 Transformers 兼容的接口、符合 OpenAI 和 Ollama 标准的 RESTful API。
无论是单GPU、多GPU,还是CPU/GPU混合推理,KTransformers都能提供卓越的性能表现。此外,它还支持多种量化方法(如Q2K、Q3K、Q5K等),能够在不显著影响模型精度的情况下,大幅降低内存占用。
KTransformers核心功能
- 支持DeepSeek-R1/V3本地运行
KTransformers支持在单卡24GB VRAM的GPU上运行DeepSeek-R1/V3的Q4_K_M版本,性能表现如下:
-
Prefill Speed(tokens/s):54.21(单节点)→ 74.362(双节点)→ 286.55(优化后)。
-
Decode Speed(tokens/s):8.73(单节点)→ 11.26(双节点)→ 13.69(优化后)。
-
相比llama.cpp,KTransformers的Prefill速度提升高达27.79倍,Decode速度提升3.03倍!
-
支持长上下文推理
KTransformers能够在单卡24GB GPU上支持128K甚至1M的长上下文推理,速度比llama.cpp快10倍以上,同时保持100%的推理精度。 -
多GPU和异构计算支持
KTransformers不仅支持多GPU并行推理,还支持CPU/GPU混合推理,充分利用硬件资源,提升推理效率。 -
灵活的配置和优化
用户可以通过简单的YAML配置文件,灵活地调整模型的优化策略,例如选择不同的量化方法或替换特定的模块。 -
丰富的API和教程
KTransformers提供了RESTful API和详细的教程文档,方便开发者快速上手。
如何使用KTransformers?
使用KTransformers非常简单,以下是基本步骤:
-
安装依赖
pip install ktransformers
-
加载模型
from transformers import AutoModelForCausalLM import torch with torch.device("meta"): model = AutoModelForCausalLM.from_config(config, trust_remote_code=True)
-
优化和加载模型
from ktransformers import optimize_and_load_gguf optimize_and_load_gguf(model, optimize_rule_path, gguf_path, config)
-
生成文本
generated = prefill_and_generate(model, tokenizer, input_tensor.cuda(), max_new_tokens=1000)
性能对比:KTransformers vs llama.cpp
指标 | llama.cpp(双节点,64核) | KTransformers(双节点,64核) | 提升倍数 |
---|---|---|---|
Prefill Speed | 10.31 tokens/s | 286.55 tokens/s | 27.79× |
Decode Speed | 4.51 tokens/s | 13.69 tokens/s | 3.03× |
从上表可以看出,KTransformers在性能上远超llama.cpp,尤其是在Prefill阶段,速度提升了27.79倍!
KTransformers的适用场景
-
本地开发和测试
如果您希望在本地快速开发和测试大模型,KTransformers是一个理想的选择。 -
资源受限的环境
对于硬件资源有限的开发者,KTransformers可以通过优化和量化,让模型在有限的资源下运行得更好。 -
高性能推理需求
如果您需要在本地实现高性能的模型推理,KTransformers的多GPU和异构计算支持能够满足您的需求。
如何获取KTransformers?
KTransformers的源代码和文档均是开源的,直接访问其GitHub仓库即可:https://github.com/kvcache-ai/ktransformers
如何学习大模型 AI ?
由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。
但是具体到个人,只能说是:
“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。
这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。
我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。
我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。
第一阶段(10天):初阶应用
该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。
- 大模型 AI 能干什么?
- 大模型是怎样获得「智能」的?
- 用好 AI 的核心心法
- 大模型应用业务架构
- 大模型应用技术架构
- 代码示例:向 GPT-3.5 灌入新知识
- 提示工程的意义和核心思想
- Prompt 典型构成
- 指令调优方法论
- 思维链和思维树
- Prompt 攻击和防范
- …
第二阶段(30天):高阶应用
该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。
- 为什么要做 RAG
- 搭建一个简单的 ChatPDF
- 检索的基础概念
- 什么是向量表示(Embeddings)
- 向量数据库与向量检索
- 基于向量检索的 RAG
- 搭建 RAG 系统的扩展知识
- 混合检索与 RAG-Fusion 简介
- 向量模型本地部署
- …
第三阶段(30天):模型训练
恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。
到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?
- 为什么要做 RAG
- 什么是模型
- 什么是模型训练
- 求解器 & 损失函数简介
- 小实验2:手写一个简单的神经网络并训练它
- 什么是训练/预训练/微调/轻量化微调
- Transformer结构简介
- 轻量化微调
- 实验数据集的构建
- …
第四阶段(20天):商业闭环
对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。
- 硬件选型
- 带你了解全球大模型
- 使用国产大模型服务
- 搭建 OpenAI 代理
- 热身:基于阿里云 PAI 部署 Stable Diffusion
- 在本地计算机运行大模型
- 大模型的私有化部署
- 基于 vLLM 部署大模型
- 案例:如何优雅地在阿里云私有部署开源大模型
- 部署一套开源 LLM 项目
- 内容安全
- 互联网信息服务算法备案
- …
学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。
如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。