近几年,深度学习让人工智能的能力突飞猛进,不仅在自然语言处理(NLP) 领域大放异彩,也开始在生命科学领域展现出惊人的潜力。来自多伦多大学、Helmholtz慕尼黑研究所、加州大学旧金山分校等多家顶级科研机构的研究团队,在Nature Machine Intelligence期刊上发表了一篇重磅综述,探讨了Transformer如何作为“基因组语言模型(gLMs)”,解码生命的神秘密码。
这项研究由计算机科学家、深度学习专家和生物信息学家联合完成,作者包括Micaela E. Consens、Cameron Dufault、Michael Wainberg、Fabian J. Theis等。团队将目光投向基因组数据,尝试用Transformer这一AI领域最强大的模型,去挖掘DNA序列中的隐含信息,帮助科学家更高效地预测基因调控、理解突变影响、甚至解析未知的生物机制。
Transformer 为什么适用于基因组学?
在NLP领域,Transformer通过注意力机制(self-attention)理解词语之间的关系。那么,如果把DNA看成一串“语言代码”,能否用Transformer来“阅读”生命呢? 研究团队认为,DNA和人类语言有惊人的相似之处:
- 都是“序列数据”,即由一系列符号(碱基或单词)组成。
- 都存在长程依赖性,DNA片段可能跨越很远的区域产生调控作用,类似于人类语言的上下文关联。
- 都可以通过自监督学习(Self-supervised Learning)进行预训练,避免依赖大量人工标注数据。
在过去的基因组分析中,研究人员大多使用卷积神经网络(CNN)或循环神经网络(RNN),但这些模型都有局限:
- CNN只能识别局部特征,无法有效捕捉远程调控的 DNA 关系。
- RNN由于序列依赖,训练时难以并行,且无法处理超长 DNA 序列。
Transformer 的加入,正好弥补了这些缺陷!
A big-picture look at the diverse applications of gLMs
基因组语言模型(gLMs)有哪些应用?
在基因组研究中,Transformer主要用于构建基因组语言模型(gLMs),这些模型可以:
✅ 预测基因调控区域(启动子、增强子、沉默子等)
✅ 解析 DNA 突变对基因功能的影响
✅ 预测基因表达水平,揭示疾病相关的基因调控机制
✅ 模拟 RNA 结合蛋白(RBP)的相互作用
✅ 帮助精准医学,探索新的生物标志物
为了实现这些目标,研究团队开发了多种基因组Transformer模型,包括:
🔹 DNABERT:借鉴NLP领域的BERT结构,对DNA进行k-mer编码,并在基因调控预测中表现出色。
🔹 Enformer:结合CNN和Transformer,可分析长达200kb的DNA片段,预测远程调控作用。
🔹 Nucleotide Transformer:参数量高达25亿,跨物种训练,能够更好地学习基因组的通用规律。
🔹 HyenaDNA:采用非Transformer结构(Hyena Layer),可以处理超过100万碱基 的序列,大大扩展了模型的上下文窗口。
这些模型通过预训练+微调(fine-tuning) 的方式,让AI逐步掌握基因组的“语法规则”,最终可以在多个下游任务上表现出色。
A comparison of how different genomic deep learning models operate on DNA sequence data
挑战与未来趋势
尽管Transformer在基因组研究中表现亮眼,但仍然面临一些挑战:
❌ 计算成本高:注意力机制计算复杂度为 O(N2)O(N^2),限制了输入序列的长度。
❌ 缺乏长程依赖性建模:尽管Transformer比CNN和RNN表现更好,但仍然难以处理整个染色体的上下文信息。
❌ 数据稀缺:大量基因组数据缺乏高质量的人工标注,使得监督学习的效果受限。
❌ 可解释性问题:Transformer的attention机制虽然提供了一定的可视化能力,但仍然难以直接推断生物学规律。
因此,研究团队展望了Transformer之外的新方向:
🔸 状态空间模型(SSMs):如Hyena Layer、Mamba等,计算更高效,可处理更长的 DNA片段。
🔸 混合架构(Hybrid Models):结合CNN、RNN与Transformer,提高模型的准确性。
🔸 多模态学习(Multi-Modal Learning):结合RNA-seq、ATAC-seq、ChIP-seq等多种数据,进行更全面的基因组分析。
🔸 零样本学习(Zero-shot Learning):提升AI解析未知DNA片段的能力,助力新功能元件的发现。
如何学习大模型 AI ?
由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。
但是具体到个人,只能说是:
“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。
这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。
我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。
我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。
第一阶段(10天):初阶应用
该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。
- 大模型 AI 能干什么?
- 大模型是怎样获得「智能」的?
- 用好 AI 的核心心法
- 大模型应用业务架构
- 大模型应用技术架构
- 代码示例:向 GPT-3.5 灌入新知识
- 提示工程的意义和核心思想
- Prompt 典型构成
- 指令调优方法论
- 思维链和思维树
- Prompt 攻击和防范
- …
第二阶段(30天):高阶应用
该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。
- 为什么要做 RAG
- 搭建一个简单的 ChatPDF
- 检索的基础概念
- 什么是向量表示(Embeddings)
- 向量数据库与向量检索
- 基于向量检索的 RAG
- 搭建 RAG 系统的扩展知识
- 混合检索与 RAG-Fusion 简介
- 向量模型本地部署
- …
第三阶段(30天):模型训练
恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。
到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?
- 为什么要做 RAG
- 什么是模型
- 什么是模型训练
- 求解器 & 损失函数简介
- 小实验2:手写一个简单的神经网络并训练它
- 什么是训练/预训练/微调/轻量化微调
- Transformer结构简介
- 轻量化微调
- 实验数据集的构建
- …
第四阶段(20天):商业闭环
对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。
- 硬件选型
- 带你了解全球大模型
- 使用国产大模型服务
- 搭建 OpenAI 代理
- 热身:基于阿里云 PAI 部署 Stable Diffusion
- 在本地计算机运行大模型
- 大模型的私有化部署
- 基于 vLLM 部署大模型
- 案例:如何优雅地在阿里云私有部署开源大模型
- 部署一套开源 LLM 项目
- 内容安全
- 互联网信息服务算法备案
- …
学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。
如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。