AI技术的崛起宛如一场海啸,席卷了各个行业。而医疗领域作为关乎国计民生的关键行业,正处于这场技术变革的风暴中心。
以往,医疗行业的投资逻辑一般围绕市场规模、科技创新性、产品潜在销售市场等进行考量。但随着AI的横空出世,我们发现投资风向正悄然转变——数据、算法和创新的商业模式开始崭露头角,成为新的投资热点。
面对AI带来的无限可能,医疗行业的投资逻辑该如何重新构建?在这场医疗技术革命中,又隐藏着哪些新的投资机遇与挑战?这些问题,亟待每一位医疗科技领域的投资人以及创业者深入思考。
无声颠覆:AI如何重绘医疗产业版图
在浙江的一家三甲医院放射科,医生日均处理CT影像量从80例跃升至200例,误诊率却下降40%。这并不是因为人力倍增,而是某医疗科技企业研发的影像智能分析系统在发挥作用——该系统通过深度学习百万级标注数据,可自动识别0.3mm肺结节,单例成本仅0.5元,边际利润率高达60%。
这昭示着一个关键趋势:医疗AI的价值创造已从“效率工具”升级为“生产力引擎”。
当AI诊断准确率突破95%、电子病历生成时间压缩90%、医保控费系统降低15%拒付率时,医疗行业的成本结构、服务模式乃至价值链分配都在发生根本性重构。
解剖样本:从创业慧康看AI医疗的三大价值裂变
我们以国内医疗信息化领域上市企业创业慧康为观察切口,透视AI医疗的三大价值裂变,可清晰看到AI对医疗产业的改造路径:
*1、数据资产化:从“成本黑洞”到“利润源泉”
中国医疗机构每年产生超过50亿份电子病历、3.6亿次医学影像检查,数据总量达50EB(相当于5亿部高清电影)。但据2023年统计,90%的医疗数据处于"沉睡"状态,三级医院每年为存储这些数据需投入平均800-1200万元/家,却无法产生直接收益。在AI赋能下,这些原先的成本支出正逐渐变成能为多方带来收益的资源:
-
数据治理变现:通过清洗、标注医院沉淀的1亿份电子病历、3亿份健康档案,形成具备变现价值的结构化数据资产包。比如:与跨国药企签订3年期慢性病数据服务合同金额达5000万元,毛利率超80%。
-
动态智能分成:在DRG控费场景中,如何有效进行单病种控费是医院面临的明显痛点。AI利用算法优势,可帮助医院建立智能化控费系统,以确保全院医生的日常治疗都能满足DRG要求。系统在助力医院控费的同时,可按节约金额15%的比例向医院收取获利分成。通过试点,AI控费系统在浙江某医院分得的年利润超过180万元。
2、能力平权化:基层医疗的“技术跃迁”
中国的基层医疗一直面临人才缺失、医生诊疗能力参差不齐的困境,AI技术的应用正在补齐这些短板。
-
影像诊断下沉:创业慧康搭载AI的CTasy系统在西部县级医院落地,使肺结节检出率从58%提升至85%。与此同时,国家卫健委将AI辅助诊断纳入《医疗服务价格项目规范(2024版)》,明确允许对AI增强型检查项目上浮15-25%定价。据西部省份试点,搭载CTasy系统的医院,CT检查费普遍溢价20%。
-
全科医生增强:“数智全科医生”已在江西500家卫生院部署,高血压用药符合指南率从43%跃升至89%,医院可因此获得1.2元/人次的政府补贴。
3、生态平台化:从软件商到医疗智能体运营商
-
应用商店抽佣:通过聚合200+第三方AI应用企业(如基因检测工具),AI数据平台可按交易额抽取20-25%佣金,5%返还数据提供方即医院,其余企业留存。通过这样的方式,企业和医院都能在数据挖掘中实现长期互利共赢。
-
全球化输出:与飞利浦联合开发的CareSync系统登陆东南亚,通过跨国公司渠道,实现中国AI诊断标准对海外市场的反向渗透。
投资逻辑重构:本身增值到潜在价值
传统医疗更关注设备本身产生的增值,而AI医疗则可多维度挖掘设备以外的潜在价值。
1、场景深度×数据厚度×商业化速度
-
深挖医疗场景潜在价值:通过实时分析患者心电图、病史、用药数据,实现恶性心律失常风险的提前预警(准确率92%),医院可按科室床位数对此项服务进行收费(200元/床/月)。以一家300张床位规模医院为例,该院不仅每年可获得72万元此项服务收入,还能因此减少医疗纠纷节约成本超200万元。
-
数据厚度的价值挖掘:创业慧康凭借7000家医疗机构、2.5亿居民健康档案构建的数据壁垒,使其AI模型迭代速度比同业快3倍。医院接入系统即贡献数据,数据反哺模型优化,形成"接入-提升-续费"正循环,客户流失率仅8%,远低于25%的行业均值。
-
提升现金流转化效率:影像AI按调用量收费(0.5元/次)、DRG按节约金额的15%提取控费分成、硬件捆绑按每台CT销售分成8%等组合模式,创业慧康已逐渐形成长期现金流盈利的商业模式。
2、政策×技术的共振节点
-
DRG/DIP改革催生出病案质控、单病种成本控制、临床路径优化等每年超50亿元的医保AI刚需。AI服务的持续收费能力,使系统建设的成本回收期从过去的3年压缩至现在的1.5年。
-
边缘计算突破:在医院急诊中心部署智能算力盒子,大大提升急诊分诊和CT诊断等效率,使院内死亡率降低28%,满足急诊场景实时快速需求。
3、估值范式迁移:从PS到DCF的临界点
当AI订阅收入占比突破30%时,企业估值逻辑将从传统软件公司的PS估值转向更关注经常性收入的DCF模型。
以创业慧康为例,其AI产品收入占比从2023年的5%提升至2025年的18%,带动PS估值从3倍向5倍医疗AI龙头均值靠拢。随着订阅收入占比的不断提升,意味类似创业慧康这样的公司,将从原先的软件公司转型为真正的AI解决方案提供商。
AI医疗必将带动的未来趋势
1、数据将成为医疗行业的重要资产,谁拥有数据,谁就拥有未来
- 医疗数据将实现**从“生产资料”到“资本化价值”**的跃迁。例如:平安健康建立的动态健康图谱整合了2.3亿份电子病历与可穿戴设备数据,其糖尿病预测模型授权保险公司使用,年服务费收入超8亿元;构建传染病传播模型,提前6-9周预测暴发风险。
- 当医疗数据实现从**“资源”到“资产”再到“资本”**的逐级跃升后,贡献数据的每一方或都将从数据中获益。患者:获得"数据分红"收益,享受个性化健康管理服务;医院:数据资产贡献率将超过固定资产,成为核心竞争力指标;产业:将催生万亿级医疗数据要素市场,诞生新型数据银行、数据信托等业态。
2、基层医疗能力提升的推动力量
-
多模态辅助诊断系统整合了医学影像(如CT)、病理切片、基因检测等数据,将会使基层医生诊断准确率大大提升;
-
AI智能审方系统将拦截配伍禁忌、超量用药等风险,使基层医疗机构用药差错率下降76%;
-
远程手术导航:AI+AR等系统相结合,实时指导基层医生完成之前无法完成的复杂手术,三甲专家通过虚拟示教系统同步修正操作路径。某国产设备厂商按手术例数抽取10%技术服务费,单台设备年创收超80万元,使基层手术量提升300%。
结语:在重构中寻找“新物种”
当AI将三甲医院的诊断能力复制到县城卫生院,当电子病历从记录工具升级为预测引擎,当数据资产成为比药品更“暴利”的商品时——医疗投资正在经历从“资源依赖”到“智能驱动”的范式革命。
创业慧康的蜕变之路揭示了一个道理:未来十年的医疗巨头,必是那些能用AI将数据转化为临床价值、将技术转化为付费场景、将生态转化为护城河的企业。对于医疗科技的投资者而言,此刻需要的不仅是财务模型精算,更是对医疗本质与技术革命的重新解构。
“医疗没有永恒的壁垒,只有不断进化的生产力。”——这场无声革命的入场券,正藏在每一个AI重构的诊疗细节中。
如何学习大模型 AI ?
由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。
但是具体到个人,只能说是:
“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。
这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。
我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。
我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。
第一阶段(10天):初阶应用
该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。
- 大模型 AI 能干什么?
- 大模型是怎样获得「智能」的?
- 用好 AI 的核心心法
- 大模型应用业务架构
- 大模型应用技术架构
- 代码示例:向 GPT-3.5 灌入新知识
- 提示工程的意义和核心思想
- Prompt 典型构成
- 指令调优方法论
- 思维链和思维树
- Prompt 攻击和防范
- …
第二阶段(30天):高阶应用
该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。
- 为什么要做 RAG
- 搭建一个简单的 ChatPDF
- 检索的基础概念
- 什么是向量表示(Embeddings)
- 向量数据库与向量检索
- 基于向量检索的 RAG
- 搭建 RAG 系统的扩展知识
- 混合检索与 RAG-Fusion 简介
- 向量模型本地部署
- …
第三阶段(30天):模型训练
恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。
到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?
- 为什么要做 RAG
- 什么是模型
- 什么是模型训练
- 求解器 & 损失函数简介
- 小实验2:手写一个简单的神经网络并训练它
- 什么是训练/预训练/微调/轻量化微调
- Transformer结构简介
- 轻量化微调
- 实验数据集的构建
- …
第四阶段(20天):商业闭环
对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。
- 硬件选型
- 带你了解全球大模型
- 使用国产大模型服务
- 搭建 OpenAI 代理
- 热身:基于阿里云 PAI 部署 Stable Diffusion
- 在本地计算机运行大模型
- 大模型的私有化部署
- 基于 vLLM 部署大模型
- 案例:如何优雅地在阿里云私有部署开源大模型
- 部署一套开源 LLM 项目
- 内容安全
- 互联网信息服务算法备案
- …
学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。
如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。