TxGemma:高效多功能 AI 赋能药物研发

img

目录

  1. BoltzDesign1 反转结构预测模型,实现高效、通用的生物分子结合剂设计,无需微调或反向传播。
  2. 可解释多模态机器学习在预测肿瘤蛋白 - 金属结合中的应用,并提出了未来发展方向。
  3. OLAF 平台赋能生命科学家使用自然语言进行生物信息学分析,自动化执行流程并提供可视化结果。
  4. Prot42 仅需序列信息即可设计高亲和力结合蛋白,并在多个基准测试中表现优异。
  5. TxGemma 模型在药物研发任务中展现出卓越性能,兼具高效推理、多模态理解和可解释性。

1. BoltzDesign1:高效设计生物分子结合剂

BoltzDesign1 提出了一种新的框架,通过反转 Boltz-1 全原子结构预测模型,实现了针对多种分子靶标的直接蛋白质结合剂设计。与以往方法不同,BoltzDesign1 无需模型微调或扩散反向传播。研究者利用距离分布图(原子间距离的概率分布)而非采样结构进行优化,显著降低了计算成本,同时保持了设计保真度并增强了结构多样性。相较于 RfDiffusionAA 等先前模型,BoltzDesign1 在优化过程中采用了灵活的配体建模,生成的结合剂能够在每次迭代中适应配体构象,这对于未知或动态靶标是一项重大优势。

该方法仅使用了 Boltz-1 中的 Pairformer 和 Confidence 模块,省去了内存密集型扩散模块,但仍对 IAI、FAD、SAM 和 OQO 等小分子结合剂实现了较高的计算机模拟成功率。BoltzDesign1 在设计多样性、AlphaFold3 成功指标(pLDDT > 0.7,iPAE < 10)和跨模型结构一致性方面均优于 RfDiffusionAA,同时还在关键界面处生成了具有更高序列恢复率的结合剂。模块化的四阶段优化方案能够探索连续序列空间,然后收敛到置信的单热编码序列,并通过 LigandMPNN 进行界面感知细化,进一步增强了设计效果。

该框架的应用不限于小分子:BoltzDesign1 还设计了针对金属离子(铁、锌)、B-DNA 和翻译后修饰蛋白(例如 PCNA-Y211、Smad2、CD45 糖基化)的结合剂,所有这些都经过 AlphaFold3 和 AllMetal3D 的验证。设计的结合剂展现出预期的生化特性,例如金属结合的已知配位残基和核酸相互作用的静电互补性,证明了其生物学上的合理性和精确性。BoltzDesign1 无需循环步骤即可达到最高的成功率,这表明更简单的优化流程可以防止结构预测过程中的过度拟合或对抗性置信度膨胀。基于距离分布图的损失与 pLDDT 和 inter-pAE 等置信度指标密切相关,验证了其作为蛋白质 - 配体设计中分子内和分子间接触的结构代理的有效性。该框架提供了一种通用且架构高效的方法,通过充分利用预训练的结构模型(无需重新训练),在蛋白质工程、药物发现和诊断领域生成功能性结合剂。未来的研究方向包括整合核酸 MSA、使用模板进行约束设计,以及扩展对柔性 RNA/DNA 靶标和多价或多修饰生物分子系统的支持。

img

2. 可解释多模态学习助力抗癌药物研发

肿瘤蛋白 - 金属结合是金属基抗癌疗法的关键机制。本研究探讨了可解释多模态机器学习在预测肿瘤蛋白 - 金属结合中的应用,旨在加速药物发现并确保模型的可解释性和生物学相关性。作者确定了四个关键数据模态:序列、结构、蛋白口袋和生物文本,它们分别提供了对蛋白质行为、结合亲和力和生物学功能的不同但互补的见解。研究者提出了一种结构化工作流程,用于从这些模态中获取、预处理和提取特征,从而训练能够预测金属结合位点、分类金属类型和识别肿瘤金属蛋白的机器学习模型。

当前的主要挑战是缺乏肿瘤特异性蛋白 - 金属结合数据集。为了解决这个问题,作者建议将癌症数据集(例如 TCGA)与通用蛋白 - 金属结合资源(例如 PDB、MetalPDB)整合,以构建高质量的、与肿瘤相关的数集。研究回顾了现有的机器学习模型,包括 MCCNN、MetalPrognosis 和 MetalTrans,指出当前模型通常缺乏可解释性,并且难以进行多模态整合。因此,研究提倡将通用蛋白 - 金属模型调整应用于肿瘤特异性环境。

可解释性是本研究的重点。文章调研了固有可解释模型(例如决策树、GAMs)和事后解释方法(例如 SHAP、LIME、Integrated Gradients),并敦促在生物医学应用中采用这些方法,以确保模型的透明度和可信度。未来的研究方向包括整合蛋白质 - 蛋白质相互作用 (PPI) 网络,为金属结合预测提供结构背景,并模拟肿瘤蛋白结合后的结构变化,为金属基药物的设计提供信息。

img

3. OLAF:用自然语言进行生物信息学分析

OLAF 是一个开源平台,允许生命科学家使用自然语言进行生物信息学分析。不同于通用的大型语言模型(LLM),OLAF 可以直接读取、处理和可视化科学数据,例如单细胞 RNA 测序数据(.h5ad 格式),从而弥合了 AI 助手与实际生物信息学流程之间的差距。其核心的 agent–pipe–router 架构使用户能够通过自然语言提问,例如“鉴定差异表达基因”或“按聚类查找标记基因”。OLAF 后端会生成并执行特定领域的 Python 代码(例如,通过 Scanpy),实时返回图表和结果。

OLAF 集成了沙盒化的 Python 执行环境和理解生物数据和计算逻辑的 LLM 驱动代理。这种端到端的自动化使用户无需编写代码、安装软件包或调试脚本,OLAF 会处理所有这些任务。与 ChatGPT 等通用工具不同,OLAF 理解科学文件格式,支持文件上传,执行代码并返回交互式可视化结果。它专为非程序员和希望通过简单对话分析组学数据的研究人员而设计。

此外,OLAF 还可作为教育工具。用户可以检查生成的代码和输出,从而更容易学习生物信息学方法。这种透明度支持可重复性科学,并为生物学家和计算专家之间更广泛的合作打开了大门。相比 BioChatter 和基于 LangChain 的代理等现有工具,OLAF 的独特优势在于其原生文件处理、完整的流程执行、模块化可扩展性和用户友好的 Web 界面。

OLAF 采用 Angular 前端和 Python/Firebase 后端构建,具有可扩展性、可重复性(支持 Docker)并且面向社区。开发人员可以使用新的代理或提示扩展 OLAF,而用户无需编写任何代码即可与数据和流程进行交互。OLAF 的未来发展方向包括支持其他组学模式(例如蛋白质组学、成像),与实验室信息管理系统(LIMS)集成,用于实验室自动化的机器人系统,以及针对更准确的特定领域性能进行微调的 LLM。

img

4. Prot42:全新蛋白质语言模型革新结合蛋白设计

Prot42 是一系列专为基于序列的蛋白质结合蛋白设计而开发的生成式蛋白质语言模型。不同于需要三维结构数据或预定义结合位点的结构模型(如 AlphaProteo 或 RFdiffusion),Prot42 采用仅解码器的自回归 Transformer 架构,仅从序列信息生成结合蛋白。其支持高达 8,192 个氨基酸的序列长度,远超现有蛋白质语言模型 1k-2k 的限制。通过学习目标 - 结合蛋白相互作用对的条件分布,Prot42 实现了高结合特异性和亲和力。它通过随机采样和亲和力过滤,自回归地生成结合蛋白。

Prot42 不仅擅长蛋白质 - 蛋白质结合蛋白生成,还能创建序列特异性 DNA 结合蛋白。它集成了来自 Gene42(基因组语言模型)的嵌入,用于上下文感知生成,使其能够应用于基因组编辑和合成生物学。实验结果表明,与 AlphaProteo 相比,Prot42 生成的结合蛋白对包括 IL-7RA、PD-L1、TrkA、VEGF-A 和 TNFα 在内的多个治疗靶点实现了具有竞争力甚至更优的预测结合亲和力,表现为更低的解离常数 (Kd)。

研究者使用 PEER 基准测试套件对模型进行了评估,涵盖了 14 项任务,包括蛋白质功能预测、定位、结构和相互作用预测。Prot42 在各项任务中始终名列前茅,验证了其广泛的泛化能力。Prot42 的嵌入有效地捕获了亚细胞定位和功能模式,在 t-SNE 投影中产生了不同的簇。这证明了其在下游预测任务(如蛋白质注释、药物靶向和合成设计)中的潜力。对于 DNA 结合蛋白设计,Prot42 使用交叉注意力机制将 DNA 嵌入与蛋白质表征融合,生成与特定 DNA 基序相互作用的结合蛋白。这扩展了模型在蛋白质 - 蛋白质系统之外的应用。

Prot42 代表了蛋白质语言建模的生成式飞跃。其可扩展的架构、长上下文支持和仅序列操作重新定义了计算结合蛋白设计,实现了功能蛋白质空间的快速计算机模拟探索。

img

5. TxGemma:高效多功能 AI 赋能药物研发

TxGemma 系列大型语言模型针对治疗应用进行了微调,在 Therapeutics Data Commons (TDC) 的 66 项任务中,使用 20 亿、90 亿和 270 亿参数的模型均取得了最先进或具有竞争力的性能。与特定任务模型不同,TxGemma 支持跨多种模态进行推理,包括 SMILES、氨基酸序列、核苷酸和生物医学文本,使其适用于各种药物发现和开发流程。TxGemma-Predict 在 66 项任务中的 64 项上优于最佳通用 LLM,在 66 项任务中的 50 项上优于专业模型,包括药物毒性、DTI 预测和临床试验结果等高风险终点,并且使用的微调数据明显更少。TxGemma-Chat 结合了针对生物医学和一般任务的指令微调,支持自然语言交互和解释。它将属性预测与通用 LLM 功能相结合,提供可解释的对话式输出。Agentic-Tx 使用 ReAct 框架扩展了 TxGemma,增加了 18 个外部工具(例如,PubMed 搜索、SMILES 分析、毒性预测),以执行多步骤推理和操作,并在 Humanity’s Last Exam 和 ChemBench 等基准测试中创下新纪录。在 GPQA 化学和生物多项选择题上,Agentic-Tx 大幅超越 GPT-4o、Claude-3.5 和 Gemini 等基准模型,证明了特定领域工具编排在治疗 LLM 应用中的价值。TxGemma 模型展现出适用于实时虚拟筛选的高推理吞吐量:270 亿参数模型通过并行化每天可处理超过 600,000 个样本,工具延迟中位数低于一秒。TxGemma 的解释,尤其是 Chat 版本的解释,提供了详细的、结构感知的解释说明(例如,基于亲脂性和分子量的血脑屏障通透性),增加了模型预测的透明度。在临床试验不良事件预测中,TxGemma-270 亿参数模型达到或超过了专业模型的性能,却只需要 10% 的训练数据,突显了其优越的数据效率和领域对齐预训练的泛化能力。TxGemma 在回归、分类和生成任务中优于 Tx-LLM、LlaSMol 和 MolE 等强大的治疗模型,即使在专门针对小分子的任务中也是如此。TxGemma 作为开源项目发布,提供与商业许可证兼容的预训练模型,允许研究人员在专有治疗数据集上微调或部署该系统。该套件标志着向统一治疗 LLM 的过渡——结合了准确性、推理能力、效率和代理工作流程——适用于研究和工业流程。

img

如何学习大模型 AI ?

由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。

但是具体到个人,只能说是:

“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。

这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。

我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。

我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。

在这里插入图片描述

第一阶段(10天):初阶应用

该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。

  • 大模型 AI 能干什么?
  • 大模型是怎样获得「智能」的?
  • 用好 AI 的核心心法
  • 大模型应用业务架构
  • 大模型应用技术架构
  • 代码示例:向 GPT-3.5 灌入新知识
  • 提示工程的意义和核心思想
  • Prompt 典型构成
  • 指令调优方法论
  • 思维链和思维树
  • Prompt 攻击和防范

第二阶段(30天):高阶应用

该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。

  • 为什么要做 RAG
  • 搭建一个简单的 ChatPDF
  • 检索的基础概念
  • 什么是向量表示(Embeddings)
  • 向量数据库与向量检索
  • 基于向量检索的 RAG
  • 搭建 RAG 系统的扩展知识
  • 混合检索与 RAG-Fusion 简介
  • 向量模型本地部署

第三阶段(30天):模型训练

恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。

到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?

  • 为什么要做 RAG
  • 什么是模型
  • 什么是模型训练
  • 求解器 & 损失函数简介
  • 小实验2:手写一个简单的神经网络并训练它
  • 什么是训练/预训练/微调/轻量化微调
  • Transformer结构简介
  • 轻量化微调
  • 实验数据集的构建

第四阶段(20天):商业闭环

对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。

  • 硬件选型
  • 带你了解全球大模型
  • 使用国产大模型服务
  • 搭建 OpenAI 代理
  • 热身:基于阿里云 PAI 部署 Stable Diffusion
  • 在本地计算机运行大模型
  • 大模型的私有化部署
  • 基于 vLLM 部署大模型
  • 案例:如何优雅地在阿里云私有部署开源大模型
  • 部署一套开源 LLM 项目
  • 内容安全
  • 互联网信息服务算法备案

学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。

如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。

这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费

在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值