在大模型微调的实践中,如何构建和选择微调数据集,是决定微调效果最关键的因素之一。目前,社区已经积累了大量优秀的微调框架和开放数据集。在很多通用场景中,开发者只需按需组合不同的框架与数据集,就能完成基础微调。
但随着模型功能越来越复杂,如支持 Function Calling、具备推理能力甚至是混合推理能力(Reasoning + Tool Use),常规数据集的适配能力也逐渐变得捉襟见肘。
例如,若想围绕 Qwen模型强化其 Function Calling 能力,同时保持其复杂推理结构不被破坏,此时很多公开数据集就难以胜任。又如,当你希望模型聚焦某个特定领域的专业知识,或者精准调用一组特定 API 工具时,也必须构造自定义微调数据集。
Qwen 模型的控制 token 与对话模板机制
Qwen 系列模型使用 ChatML 格式,并通过控制 token 来实现对生成流程的细致控制。
其关键机制如下:
-
控制 token:在文本序列中插入的特殊符号,用于标记段落、文档边界、对话结构、工具调用等。例如:
-
<|endoftext|>
:表示文档结束;和
:包裹工具调用内容;<|im_start|>
和<|im_end|>
:用于定义对话轮次。
-
统一词表体系(Qwen2.5 起):
-
-
所有子模型(包括多模态模型)使用统一词汇表;
-
共计 22 个控制 token,词表总规模达 151,665。
-
-
对话模板结构:
Qwen 使用 ChatML 格式表示对话,格式如下:
<|im_start|>{{role}} {{content}}<|im_end|>
-
-
user
:用户输入角色; -
assistant
:模型生成角色; -
system
:元信息角色(如设定模型身份或风格),默认值为:
-
示例对话片段:
<|im_start|>system You are Qwen, created by Alibaba Cloud. You are a helpful assistant.<|im_end|><|im_start|>user hello<|im_end|><|im_start|>assistant Hello! How can I assist you today? ...<|im_end|>
通常,大家看到的对话微调数据格式如下,适用于结构化对话训练:
[ { "instruction": "用户问题", "input": "输入上下文,可为空", "output": "期望模型输出" }]
适用于 ChatML 模型微调,精确控制每轮角色与内容:
<|im_start|>system You are Qwen...<|im_end|><|im_start|>user 请解释大语言模型<|im_end|><|im_start|>assistant 好的,我来用儿童的方式解释...<|im_end|><|endoftext|>
指令 + Function Calling 数据格式:
<|im_start|>user 查询今天上海天气<|im_end|><|im_start|>assistant <tool_call>{"name": "getWeather", "arguments": {"location": "Shanghai"}}</tool_call><|im_end|>
通用模型能力越强,对数据格式的要求越高。若希望打造具备复杂任务处理能力的模型,“数据工程”远比模型选择本身更重要。
建议开发者根据目标任务特性:
- 选择标准数据集进行预热训练;
- 然后使用小规模、高质量的自定义数据集进行精调;
- 特别是在 Function Calling 与多轮推理任务中,务必使用 ChatML 格式精准标注角色与意图。
如何学习大模型 AI ?
由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。
但是具体到个人,只能说是:
“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。
这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。
我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。
我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。
第一阶段(10天):初阶应用
该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。
- 大模型 AI 能干什么?
- 大模型是怎样获得「智能」的?
- 用好 AI 的核心心法
- 大模型应用业务架构
- 大模型应用技术架构
- 代码示例:向 GPT-3.5 灌入新知识
- 提示工程的意义和核心思想
- Prompt 典型构成
- 指令调优方法论
- 思维链和思维树
- Prompt 攻击和防范
- …
第二阶段(30天):高阶应用
该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。
- 为什么要做 RAG
- 搭建一个简单的 ChatPDF
- 检索的基础概念
- 什么是向量表示(Embeddings)
- 向量数据库与向量检索
- 基于向量检索的 RAG
- 搭建 RAG 系统的扩展知识
- 混合检索与 RAG-Fusion 简介
- 向量模型本地部署
- …
第三阶段(30天):模型训练
恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。
到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?
- 为什么要做 RAG
- 什么是模型
- 什么是模型训练
- 求解器 & 损失函数简介
- 小实验2:手写一个简单的神经网络并训练它
- 什么是训练/预训练/微调/轻量化微调
- Transformer结构简介
- 轻量化微调
- 实验数据集的构建
- …
第四阶段(20天):商业闭环
对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。
- 硬件选型
- 带你了解全球大模型
- 使用国产大模型服务
- 搭建 OpenAI 代理
- 热身:基于阿里云 PAI 部署 Stable Diffusion
- 在本地计算机运行大模型
- 大模型的私有化部署
- 基于 vLLM 部署大模型
- 案例:如何优雅地在阿里云私有部署开源大模型
- 部署一套开源 LLM 项目
- 内容安全
- 互联网信息服务算法备案
- …
学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。
如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。