记忆是AI系统的基本组成部分,尤其是对于基于LLMs的Agents。首次将记忆表示分为三类:参数化记忆、上下文结构化记忆和上下文非结构化记忆,并介绍了六种基本的记忆操作:巩固、更新、索引、遗忘、检索和压缩。盘点了几十种记忆框架、产品、应用!
通过将这些操作系统地映射到长期记忆、长上下文记忆、参数修改和多源记忆等最相关的研究主题中,从原子操作和表示类型的视角重新审视记忆系统,为AI中与记忆相关的研究、基准数据集和工具提供了一个结构化和动态的视角。
一、记忆的分类体系
详细介绍了AI系统中记忆的分类体系,将记忆分为三种主要类型:参数化记忆(Parametric Memory)、上下文结构化记忆(Contextual Structured Memory)和上下文非结构化记忆(Contextual Unstructured Memory)。以下是该部分的内容总结:
1.1 参数化记忆
-
定义:参数化记忆是指模型内部参数中隐式存储的知识。这些知识在预训练或后训练过程中获得,并在推理时通过前馈计算访问。
-
特点:
-
- 提供即时、长期且持久的记忆,能够快速检索事实和常识知识。
- 缺乏透明性,难以根据新体验或特定任务上下文选择性地更新。
-
应用场景:适用于需要快速访问固定知识的场景,例如问答系统和常识推理任务。
1.2 上下文非结构化记忆
-
定义:上下文非结构化记忆是一种显式的、模态通用的记忆系统,用于存储和检索跨异构输入(如文本、图像、音频、视频)的信息。
-
特点:
-
- 支持基于感知信号的推理,能够整合多模态上下文。
- 根据时间范围,进一步分为短期记忆(如当前对话会话上下文)和长期记忆(如跨会话对话记录和个人持久知识)。
-
应用场景:适用于需要处理多模态输入和动态上下文的任务,例如多模态对话系统和视觉问答系统。
1.3 上下文结构化记忆
-
定义:上下文结构化记忆是指以预定义的、可解释的格式或模式(如知识图谱、关系表、本体论)组织的显式记忆,这些记忆可以根据请求进行查询。
-
特点:
-
- 支持符号推理和精确查询,通常与预训练语言模型的关联能力相辅相成。
- 可以是短期的(在推理时构建用于局部推理)或长期的(跨会话存储策划知识)。
-
应用场景:适用于需要精确知识检索和推理的任务,例如知识图谱问答和复杂事件推理任务。
二、记忆6种操作
详细介绍了AI系统中记忆操作的分类和功能。这些操作被分为两大类:记忆管理(Memory Management)和记忆利用(Memory Utilization)。
2.1 记忆管理
记忆管理涉及如何存储、维护和修剪记忆,以支持记忆在与外部环境交互过程中的有效使用。记忆管理包括以下四种核心操作:
-
Consolidation(巩固):
-
- 定义:将短期经验转化为持久记忆,例如将对话历史编码为模型参数、知识图谱或知识库。
- 功能:支持持续学习、个性化、外部记忆库构建和知识图谱构建。
- 应用场景:在多轮对话系统中,将对话历史整合到持久记忆中,以便在未来的对话中使用。
-
Indexing(索引):
-
- 定义:构建辅助代码(如实体、属性或基于内容的表示),以便高效检索存储的记忆。
- 功能:支持可扩展的检索,包括符号、神经和混合记忆系统。
- 应用场景:在大规模记忆库中,通过索引快速定位和检索相关信息。
-
Updating(更新):
-
- 定义:重新激活现有记忆表示并对其进行临时修改。
- 功能:支持持续适应,同时保持记忆一致性。例如,通过定位和编辑机制修改模型参数,或通过总结、修剪或精炼来更新上下文记忆。
- 应用场景:在对话系统中,根据用户反馈动态更新记忆内容。
-
Forgetting(遗忘):
-
- 定义:有选择性地抑制可能过时、无关或有害的记忆内容。
- 功能:通过遗忘技术(如修改模型参数以擦除特定知识)或基于时间的删除和语义过滤来丢弃不再相关的内容。
- 应用场景:在处理敏感信息时,确保隐私和安全,同时减少记忆干扰。
2.2 记忆利用
记忆利用涉及在推理过程中检索和使用存储的记忆,以支持下游任务(如响应生成、视觉定位或意图预测)。记忆利用包括以下两种操作:
-
Retrieval(检索):
-
- 定义:根据输入识别并访问相关记忆内容。
- 功能:支持从多个来源(如多模态输入、跨会话记忆)检索信息。
- 应用场景:在问答系统中,根据问题检索相关的知识库内容;在多轮对话中,检索与当前对话相关的上下文信息。
-
Compression(压缩):
-
- 定义:在保持关键信息的同时减少记忆大小,以便在有限的上下文窗口中高效使用。
- 功能:通过预输入压缩(如对长上下文输入进行评分、过滤或总结)或后检索压缩(如在模型推理前对检索到的内容进行压缩)来优化上下文使用。
- 应用场景:在处理长文本输入时,通过压缩减少计算负担,同时保留关键信息。
三、从记忆操作到系统级主题
探讨了如何将前面介绍的记忆操作(巩固、索引、更新、遗忘、检索、压缩)应用于实际的系统级研究主题。这些主题涵盖了长期记忆、长上下文记忆、参数化记忆修改和多源记忆等多个方面。
3.1 长期记忆
长期记忆是指通过与环境的交互而持久存储的信息,支持跨会话的复杂任务和个性化交互。
-
管理(Management):
-
- 巩固(Consolidation):将短期记忆转化为长期记忆,例如通过对话历史的总结或编码。
- 索引(Indexing):构建记忆索引以支持高效检索,例如通过知识图谱或时间线索引。
- 更新(Updating):根据新信息更新长期记忆,例如通过对话历史的动态编辑。
- 遗忘(Forgetting):有选择性地移除过时或不相关的记忆,例如通过时间衰减或用户反馈。
-
利用(Utilization):
-
- 检索(Retrieval):根据当前输入和上下文检索相关记忆,例如通过多跳图检索或基于事件的检索。
- 整合(Integration):将检索到的记忆与模型上下文结合,支持连贯的推理和决策。
- 生成(Generation):基于整合的记忆生成响应,例如通过多跳推理或反馈引导的生成。
-
个性化(Personalization):
-
- 模型级适应(Model-Level Adaptation):通过微调或轻量级更新将用户偏好编码到模型参数中。
- 记忆级增强(Memory-Level Augmentation):在推理时从外部记忆中检索用户特定信息以增强个性化。
3.2 长上下文记忆
长上下文记忆涉及处理和利用大量的上下文信息,以支持长文本理解和生成。
-
参数化效率(Parametric Efficiency):
-
- KV缓存丢弃(KV Cache Dropping):通过静态或动态方式丢弃不必要的KV缓存,以减少内存需求。
- KV缓存存储优化(KV Cache Storing Optimization):通过量化或低秩表示压缩KV缓存,以减少内存占用。
- KV缓存选择(KV Cache Selection):通过查询感知的方式选择性加载KV缓存,以加速推理。
-
上下文利用(Contextual Utilization):
-
- 上下文检索(Context Retrieval):通过图结构或片段级选择方法,从大量上下文中检索关键信息。
- 上下文压缩(Context Compression):通过软提示压缩或硬提示压缩,减少上下文长度,提高推理效率。
3.3 参数化记忆修改
参数化记忆修改涉及对模型内部参数的动态调整,以适应新的知识或任务需求。
-
编辑(Editing):
-
- 定位-编辑方法(Locating-then-Editing):通过归因或追踪找到存储知识的位置,然后直接修改。
- 元学习(Meta Learning):通过编辑网络预测目标权重变化,实现快速和稳健的修正。
- 提示方法(Prompt-based Methods):通过精心设计的提示间接引导输出。
- 附加参数方法(Additional-parameter Methods):通过添加外部参数模块调整行为,而不修改模型权重。
-
遗忘(Unlearning):
-
- 定位-遗忘方法(Locating-then-Unlearning):找到负责特定记忆的参数,然后应用目标更新或禁用。
- 训练目标方法(Training Objective-based Methods):通过修改训练损失函数或优化策略,显式鼓励遗忘。
-
持续学习(Continual Learning):
-
- 正则化方法(Regularization-based Methods):通过约束重要权重的更新,保留关键参数记忆。
- 重放方法(Replay-based Methods):通过重新引入过去样本强化记忆,特别适合在训练中整合检索到的外部知识。
3.4 多源记忆
多源记忆涉及整合来自不同来源(如文本、知识图谱、多模态输入)的信息,以支持更丰富的推理和决策。
-
跨文本整合(Cross-textual Integration):
-
- 推理(Reasoning):整合多格式记忆以生成一致的响应,例如通过动态整合领域特定的参数化记忆。
- 冲突解决(Conflict Resolution):识别和处理来自不同记忆源的矛盾信息,例如通过信任校准和来源归因。
-
多模态协调(Multi-modal Coordination):
-
- 融合(Fusion):对齐跨模态信息,例如通过统一语义投影或长期跨模态记忆整合。
- 检索(Retrieval):跨模态检索存储的知识,例如通过基于嵌入的相似性计算。
https://arxiv.org/pdf/2505.00675Rethinking Memory in AI: Taxonomy, Operations, Topics, and Future Directionshttps://knowledge-representation.org/j.z.pan/
如何学习大模型 AI ?
由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。
但是具体到个人,只能说是:
“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。
这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。
我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。
我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。
第一阶段(10天):初阶应用
该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。
- 大模型 AI 能干什么?
- 大模型是怎样获得「智能」的?
- 用好 AI 的核心心法
- 大模型应用业务架构
- 大模型应用技术架构
- 代码示例:向 GPT-3.5 灌入新知识
- 提示工程的意义和核心思想
- Prompt 典型构成
- 指令调优方法论
- 思维链和思维树
- Prompt 攻击和防范
- …
第二阶段(30天):高阶应用
该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。
- 为什么要做 RAG
- 搭建一个简单的 ChatPDF
- 检索的基础概念
- 什么是向量表示(Embeddings)
- 向量数据库与向量检索
- 基于向量检索的 RAG
- 搭建 RAG 系统的扩展知识
- 混合检索与 RAG-Fusion 简介
- 向量模型本地部署
- …
第三阶段(30天):模型训练
恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。
到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?
- 为什么要做 RAG
- 什么是模型
- 什么是模型训练
- 求解器 & 损失函数简介
- 小实验2:手写一个简单的神经网络并训练它
- 什么是训练/预训练/微调/轻量化微调
- Transformer结构简介
- 轻量化微调
- 实验数据集的构建
- …
第四阶段(20天):商业闭环
对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。
- 硬件选型
- 带你了解全球大模型
- 使用国产大模型服务
- 搭建 OpenAI 代理
- 热身:基于阿里云 PAI 部署 Stable Diffusion
- 在本地计算机运行大模型
- 大模型的私有化部署
- 基于 vLLM 部署大模型
- 案例:如何优雅地在阿里云私有部署开源大模型
- 部署一套开源 LLM 项目
- 内容安全
- 互联网信息服务算法备案
- …
学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。
如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。