【清华大学第六弹】2025年AIGC发展研究3.0版-180页

AIGC(Artificial Intelligence Generated Content,人工智能生成内容)是指利用人工智能技术自动生成文本、图像、音频、视频等内容。

本报告概述了2025年AIGC(人工智能生成内容)的发展状况,分析了其在技术突破、应用场景拓展、市场规模增长等方面的趋势,并指出了面临的挑战与机遇。

AIGC正深刻改变内容创作与分发模式,成为推动数字经济发展的新引擎。

img

img

img

img

img

img

img

img

img

img

img

img

img

img

img

img

img

img

img

img

img

img

img

img

img

img

img

img

img

img

img

img

img

img

img

img

img

img

img

img

img

img

img

img

img

img

img

img

img

img

img

img

img

img

img

img

img

img

img

img

img

img

img

img

img

img

img

img

img

img

img

img

img

回顾历史,AIGC的起源可以追溯到上世纪50年代,那时科学家们就开始尝试利用计算机生成语言模型。随着深度学习技术的蓬勃发展,AIGC在图像生成、自然语言处理等领域取得了显著成就,从早期的隐马尔可夫模型到如今的生成对抗网络,技术的每一次进步都推动着AIGC向更广泛的应用场景拓展。

在智能系统中,AIGC与Agent紧密相关。Agent作为一种能够感知环境、做出决策并采取行动的计算实体,常常需要调用AIGC来生成任务相关内容。例如,在智能客服中,Agent可以根据用户的提问调用AIGC生成自然语言的回答,从而提供更加人性化的服务。

同时,多模态大模型的兴起也为AIGC带来了新的发展机遇。多模态大模型能够同时处理文本、图像、音频等多种类型的数据,实现更全面的信息理解和分析。AIGC则进一步集成了这些多模态技术,实现了跨模态的内容生成,为智能问答、图像描述等场景提供了更强大的支持。

展望未来,AIGC的发展前景无限广阔。随着模型规模的持续扩大和计算资源的不断增加,AIGC生成的内容将更加精准、多样化。多模态融合也将进一步深化,使得AIGC能够同时处理多种类型的数据,实现更复杂的任务。

此外,个性化与定制化将成为AIGC发展的重要方向,满足用户日益增长的个性化需求。跨行业应用也将不断拓展,为更多领域带来智能化的变革。

然而,AIGC的发展也面临着一些挑战。如何确保生成内容的版权、隐私和伦理问题得到有效解决,将是未来需要重点关注的方向。同时,随着AIGC技术的不断进步,人机协作也将变得更加紧密。

人类与机器将共同创造更加美好的未来,而AIGC正是这一进程中不可或缺的重要力量。

完整报告下载:https://t.zsxq.com/5dRNJ

如何学习大模型 AI ?

由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。

但是具体到个人,只能说是:

“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。

这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。

我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。

我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。

在这里插入图片描述

第一阶段(10天):初阶应用

该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。

  • 大模型 AI 能干什么?
  • 大模型是怎样获得「智能」的?
  • 用好 AI 的核心心法
  • 大模型应用业务架构
  • 大模型应用技术架构
  • 代码示例:向 GPT-3.5 灌入新知识
  • 提示工程的意义和核心思想
  • Prompt 典型构成
  • 指令调优方法论
  • 思维链和思维树
  • Prompt 攻击和防范

第二阶段(30天):高阶应用

该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。

  • 为什么要做 RAG
  • 搭建一个简单的 ChatPDF
  • 检索的基础概念
  • 什么是向量表示(Embeddings)
  • 向量数据库与向量检索
  • 基于向量检索的 RAG
  • 搭建 RAG 系统的扩展知识
  • 混合检索与 RAG-Fusion 简介
  • 向量模型本地部署

第三阶段(30天):模型训练

恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。

到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?

  • 为什么要做 RAG
  • 什么是模型
  • 什么是模型训练
  • 求解器 & 损失函数简介
  • 小实验2:手写一个简单的神经网络并训练它
  • 什么是训练/预训练/微调/轻量化微调
  • Transformer结构简介
  • 轻量化微调
  • 实验数据集的构建

第四阶段(20天):商业闭环

对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。

  • 硬件选型
  • 带你了解全球大模型
  • 使用国产大模型服务
  • 搭建 OpenAI 代理
  • 热身:基于阿里云 PAI 部署 Stable Diffusion
  • 在本地计算机运行大模型
  • 大模型的私有化部署
  • 基于 vLLM 部署大模型
  • 案例:如何优雅地在阿里云私有部署开源大模型
  • 部署一套开源 LLM 项目
  • 内容安全
  • 互联网信息服务算法备案

学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。

如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。

这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费

在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值