彻底搞懂 MCP 是什么、和 API 的区别、对企业的价值,如何在企业落地、未来趋势

今天来聊聊最近很火的 MCP🔥。本文将从企业落地的视角(而不是技术视角)去介绍MCP,希望能帮助大家彻底搞懂几个问题:

  • MCP 是什么?
  • MCP 和 API 的区别?
  • MCP 对企业的价值?
  • MCP 如何在企业落地?
  • MCP 未来的发展趋势是什么?

💬 MCP 是什么?

AI 每天都在变得越来越智能,但 AI 模型只能处理它们所训练的数据,这意味着它们通常不知道现实世界中发生了什么,比如你的 Google Drive、Notion、飞书文档或者百度网盘里有什么。

为了解决 AI 和第三方系统的数据交互问题,Anthropic(Claude背后的公司)开发了一种模型上下文协议(MCP)。

MCP 可以理解为是 AI 和第三方软件之家交流的通用适配器。就像 USB 是连接硬件的标准接口,MCP 正迅速成为将软件连接到 AI 和 Agent 的标准接口。

需要注意的是,MCP 是为了让 AI 更方便地接入第三方系统(而不是方便第三方系统接入AI),因此需要第三方系统做一些改造去支持MCP协议,才能被 AI 使用。

🔮我尝试用一个通俗的例子来解释 AI**、MCP、MCP Servers(第三方系统)之间的关系:**

AI 是一个大甲方😎,一大堆小乙方🐶(第三方系统)要和他合作。但是AI是甲方爸爸啊😎,压根懒得挨个和这些小乙方聊,所以找了个小弟🙄(MCP)去干这事。这个小弟给每个小乙方发了个供应商表格,所有乙方都得按这个表格来入库,否则小弟就不理他。

img

所以 MCP 其实就大模型厂商偷懒的做法,把适配 AI 的工作量全都丢给第三方厂商,反正第三方苦点累点也可以🙄。


💬 MCP 包含什么内容?

根据 MCP 协议的规定,在 MCP 协议中有以下组件:

  • MCP Hosts(主机): 如 Claude Desktop、IDE 或 AI 工具,希望通过 MCP 访问数据的程序;
  • MCP Clients(客户端): 维护与服务器一对一连接的协议客户端;
  • MCP Servers(MCP 服务): 轻量级程序,通过标准的 Model Context Protocol 提供特定能力;
  • 数据源: MCP 服务器可安全访问的文件、数据库和服务;
  • 远程服务: MCP 服务器可连接的互联网上的外部系统(如通过 APIs);

img

看不懂概念也无所谓,简单理解为:

  • 电脑上的操作系统 = MCP Host
  • 电脑上的 USB 接口 = MCP Client
  • 鼠标、键盘、移动硬盘等各种外接设备 = MCP Server

操作系统通过USB接入外部设备,只要是提供了USB接口的外部设备,都能被操作系统识别并使用。

img


💬 MCP 和 API 的区别?

上文也讲到,AI 如果直接接入第三方系统(绝大部分通过API的方式接入),有大量的适配工作,因为 API的多样性导致对接变得复杂,比如

  • 企业中的各个系统通常使用不同的数据格式。

  • 现有系统的API接口可能基于不同协议,如REST、SOAP或GraphQL。

  • 鉴权机制(OAuth、API密钥等)不同,数据权限的范围也不同。

AI 为了避免直接处理这些繁琐的事情,就诞生了一种新的协议 MCP。

除此之外,MCP 还额外支持一些 AI 专用的功能,比如直接读取静态文件、内置提示词等。但是大家最关心的还是 MCP 如何链接各种第三方系统,相关的功能叫 MCP Tools。

img

在 MCP 中,MCP Tools 是最接近 API 的功能,MCP Tools 里面可以做 API 请求,然后在 Tools 里面处理 API的鉴权、数据格式转化等。因此 AI 对接第三方系统 API 过程中的脏活累活,大部分都在 MCP Tools里面处理。

因此可以理解为:MCP是一个包含了多种功能的中间层协议,MCP 里面有一个 Tools 功能专门用来对接第三方API。


💬 MCP 对企业的价值是加速企业智能化

img

许多企业流程(如订单处理、客服流程、库存管理、销售审批等)仍需人工操作,效率低下。未来的软件可能有20%是面向真人用户,提供复杂的交互界面来完成深度的操作,另外80%则完全交给 AI 来使用。

也就是软件不再是为人设计,或者提高人的效率。而是转变为软件是 AI 的工具集,只要软件能够提供标准化的API或者MCP,就能让 AI 帮人把事情自动化、智能化地做完。

我个人强烈相信这个趋势会在3年内实现。

因此 MCP 对企业而言是开启智能化的钥匙,为企业提供以下价值:

1. 简化内部系统与 AI 集成,降低技术门槛;

2. 提升 AI 的实时数据访问,增强AI响应能力;

3. 自动化、智能化企业的业务流程,提高运营效率;

4. 增强决策支持,释放数据价值,让企业内存储的数据能够通过 AI 的分析产生新的商业洞察。

虽然目前 MCP 受限于“老旧系统无法改造”和“AI 使用用户数据安全”等问题,但不妨碍有先见之明的企业提前布局。

下文提供一些目前可以快速将企业内部系统通过 MCP 结合 AI的方法。


💬 MCP 在企业落地的挑战

img

虽然 MCP 让 AI 能够更低成本地接入第三方系统,但 AI 落地企业时依然面临很多挑战,尤其是当 AI 能够自由调用内部系统,必须要保证业务数据的安全和流程可靠,否则CTO、CIO就会有背不完的锅🥵。

以下是目前企业系统接入 AI 时最常见的问题。

1. AI 不知道有什么内部系统、如何接入

目前用户需要手动在 MCP Client 配置 MCP 服务的信息,相当于要人工维护一个服务列表,这种方式相当低效且愚蠢。

虽然随着 MCP 的发展,官方也在引入类似微服务的“服务发现”,让第三方服务可以注册到一个中央的“注册中心”,AI 向注册中心了解目前有什么可用的 MCP 服务。但依然无法解决统一的身份认证和数据格式的问题。

2. 现有系统无法改造,无法通过 MCP 方式接入 AI

MCP 只是提供了一种第三方系统接入AI的协议,但是许多内部系统已经存在很多年,也不太可能投入人力改造,因此依然无法直接通过MCP接入AI。

3. AI 不知道这些这些系统的哪些数据是敏感的/可以用的

MCP只是解决了接入过程中数据格式层面的问题,但并没有解决数据逻辑的问题。比如翻译可以将中文转换成英文,但是无法判断其中是否有敏感内容。

目前 MCP 无法解决敏感数据安全的问题,例如客户隐私数据或财务记录,AI在访问这些数据时必须遵守严格的安全和合规性要求。由于数据分散,企业难以实施统一的安全策略,增加了数据泄露或滥用的风险。例如 AI 处理客户数据时需要符合GDPR(通用数据保护条例)等法规。

4. AI 没有记录操作历史和监控系统的可用性等

企业数据通常受到严格的权限控制,AI系统需要获得授权才能访问。此外还有AI调用API的日志记录、调用统计、成本核算等各种运维和治理需求。

为了解决上述问题,我们需要借助类似 APIPark 的 API 开放平台,将企业内部的系统清晰、高效、安全地开放给 AI 或 Agent,并且提高 AI 接入内部系统的可观测性和稳定性。


💬 通过 APIPark 帮助企业将系统接入 AI

img

🦄****APIPark 是基于 Apache 2.0 协议(可免费商用)开源的高性能 API 开放平台,帮助企业将所有系统接入AI

APIPark 于2024年7月正式发布首个Beta版,目前已经迭代到了1.8版本(加入 MCP 自动转换功能,能够快速接入所有 AI Agent),Github Star 1.1K,已经有多家五百强企业通过 APIPark 将内部系统接入 AI/Agent。

✨APIPark 核心特性:

1. 超高性能 API 网关

2. API **开放平台,**将 API 在团队内共享,或者提供给 AI Agent 使用

3. 自动将 API 转换为 MCP 服务

4. 一键部署所有主流开源 AI 模型

5. Prompt 管理:将 AI 模型和 Prompt 提示词组合成API

6. 服务订阅-审批流程,调用方需要先申请服务才可发起请求。

7. **统一鉴权管理,**APIPark 统一对所有请求进行身份认证,你不需要针对不同的系统进行适配。

8. 多维度统计报表和日志

9. 国际化支持:目前支持英语、简/繁体中文、日语,即将支持更多语言。

🔗访问 APIPark 官网和 Github了解详情:

  • 官网:https://apipark.com/
  • Github 仓库:https://github.com/APIParkLab/APIPark

现在我们可以通过 APIPark 轻松解决上 MCP 落地企业的几个问题:

  1. AI 不知道有什么内部系统、如何接入;

  2. 现有系统无法改造,无法通过 MCP 方式接入 AI;

  3. AI 不知道这些这些系统的哪些数据是敏感的/可以用的;

  4. AI 没有记录操作历史和监控系统的可用性等。


💬 将内部系统转换为 MCP 服务

由于 MCP 只是提供了一种第三方系统接入AI的协议,但是许多内部系统已经存在很多年,也不太可能投入人力改造,因此老旧系统依然无法直接通过 MCP 接入 AI。

就像现在的电脑很多都只有Type-C接口,但是十年前的数据线都还是Micro-USB接口,导致很多设备没法连接新电脑。当然解决办法也很简单,就是买个几块钱的 Micro-USB 转 Type-C 的转接头。而 APIPark 就是提供 API 转 MCP 的转接头。

只需要在 APIPark 的服务设置中开启 MCP 转换功能,APIPark 就能够自动将 API 转换为 MCP 服务。没有任何繁琐的配置。

img

下图是开启MCP之后,服务的详情页会提示已经开启了MCP,并且显示当前MCP中包含的 API/Tools 的数量。

img

APIPark 还会自动创建 MCP Tools 列表以及 MCP 配置信息,接下来只需要将配置信息复制到Claude、Cursor、Cline 等支持 MCP 的 AI/Agent 里就可以让 AI 使用内部系统了。

img


💬 在内部系统和 AI/Agent 之间建立敏感数据防火墙

APIPark 可以为API/MCP服务设置数据过滤策略,比如针对一些敏感数据(姓名、手机号、身份证号、银行卡号、日期、金额等),或者使用正则表达式、关键词、JsonPath等方式来隐藏内容。

我为某个服务添加了一个银行卡的数据脱敏规则,将第3-7位隐藏起来。这样 AI拿到的数据就会是脱敏之后的文本,比如123****。

img

APIPark 未来还不断增加新的策略,比如:

  • 针对用户设置数据脱敏,或者限制可访问的数据;
  • 限流,避免过度请求;
  • 限次,可用于计费;
  • 缓存,显著减少后端请求压力;
  • Mock,用于调试API;
  • 结合第三方API实现更多样化的数据处理。

💬 通过报表详细了解 AI、Agent、API的使用情况

可以通过 APIPark 的统计报表清晰地看到各个服务、API、AI的调用情况,并且提供了详细的请求和返回日志,方便调试。

img

img

img


💬 了解 MCP 调用日志,方便排查和监控

如果 AI 能够自由调用内部系统,除了要保证业务数据的安全和流程可靠,还需要让调用过程透明可追溯。

APIPark 会详细记录所有请求的内容,即使是 AI 通过流式传输的数据片段,APIPark 也会将分散的数据整合起来并通过可视化界面清晰展示出来。

img


💬 MCP 的未来可能会像 AI 的微服务框架

Anthropic(Claude 背后的公司) 在去2024年11月推出了模型上下文协议 (MCP),将 AI 应用与工具和数据连接起来,但是仅限于通过桌面端的 MCP Client 来访问 MCP服务。

但在2天前(2025年5月2日),Anthropic 推出了 Integrations 集成功能,使 Claude 能够跨 Web 和桌面应用程序与远程 MCP 服务器无缝协作。这意味着 AI 自主远程调用服务的时代即将到来,在线的 AI 将会脱离客户端来自主调用全球的数据服务。

img

除此之外,MCP 在接下来的6个月会重点加强以下能力:

  • MCP注册中心
  • 改进Agent功能
  • 支持多模态

如何学习大模型 AI ?

由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。

但是具体到个人,只能说是:

“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。

这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。

我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。

我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。

在这里插入图片描述

第一阶段(10天):初阶应用

该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。

  • 大模型 AI 能干什么?
  • 大模型是怎样获得「智能」的?
  • 用好 AI 的核心心法
  • 大模型应用业务架构
  • 大模型应用技术架构
  • 代码示例:向 GPT-3.5 灌入新知识
  • 提示工程的意义和核心思想
  • Prompt 典型构成
  • 指令调优方法论
  • 思维链和思维树
  • Prompt 攻击和防范

第二阶段(30天):高阶应用

该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。

  • 为什么要做 RAG
  • 搭建一个简单的 ChatPDF
  • 检索的基础概念
  • 什么是向量表示(Embeddings)
  • 向量数据库与向量检索
  • 基于向量检索的 RAG
  • 搭建 RAG 系统的扩展知识
  • 混合检索与 RAG-Fusion 简介
  • 向量模型本地部署

第三阶段(30天):模型训练

恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。

到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?

  • 为什么要做 RAG
  • 什么是模型
  • 什么是模型训练
  • 求解器 & 损失函数简介
  • 小实验2:手写一个简单的神经网络并训练它
  • 什么是训练/预训练/微调/轻量化微调
  • Transformer结构简介
  • 轻量化微调
  • 实验数据集的构建

第四阶段(20天):商业闭环

对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。

  • 硬件选型
  • 带你了解全球大模型
  • 使用国产大模型服务
  • 搭建 OpenAI 代理
  • 热身:基于阿里云 PAI 部署 Stable Diffusion
  • 在本地计算机运行大模型
  • 大模型的私有化部署
  • 基于 vLLM 部署大模型
  • 案例:如何优雅地在阿里云私有部署开源大模型
  • 部署一套开源 LLM 项目
  • 内容安全
  • 互联网信息服务算法备案

学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。

如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。

这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费

在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值