python爬取网站数据(含代码和讲解)

提示:本次爬取是利用xpath进行,按文章的顺序走就OK的;

文章目录

前言

一、数据采集的准备

1.观察url规律

2.设定爬取位置和路径(xpath)

二、数据采集

1. 建立存放数据的dataframe

2. 开始爬取

3. 把数据导出成csv表格

总结


前言

这次爬取的网站是房天下网站;

其中包含很多楼盘信息:https://newhouse.fang.com/house/s/b81-b91/

我在网站上进行了一步筛选,即选取北京及北京周边的房源,各位要是想爬取其他城市的房源信息也很简单,改一下url信息即可。

一、数据采集的准备

1.观察url规律

观察到北京及周边地区的房源有很多网页,翻几页就能发现url的规律:

网址就是:https://newhouse.fang.com/house/s/ + b81-b9X + / ;其中X是页码

利用for循环遍历所有网页:

for i in range(33): # 每页20个小区,共648个小区
    url = 'https://newhouse.fang.com/house/s/b81-b9' + str(i+1) + '/'

pip 安装fake_useragent库:

fake-useragent可以伪装生成headers请求头中的User Agent值,将爬虫伪装成浏览器正常操作。

!pip install fake_useragent

导入接下来会用到的包:

## 导包
from lxml import etree
import requests
from fake_useragent import UserAgent
import pandas as pd
import random
import time
import csv
设置请求参数:需要大家替换的有’cookie’和’referer’两项的值:

‘cookie’:每次访问网站服务器的时候,服务器都会在本地设置cookie,表明访问者的身份。记得每次使用时,都要按照固定方法人工填入一个 cookie。

‘referer’:请求参数,标识请求是从哪个页面过来的。

# 设置请求头参数:User-Agent, cookie, referer
headers = {
    'User-Agent' : UserAgent().random,
    'cookie' : "global_cookie=kxyzkfz09n3hnn14le9z39b9g3ol3wgikwn; city=www; city.sig=OGYSb1kOr8YVFH0wBEXukpoi1DeOqwvdseB7aTrJ-zE; __utmz=147393320.1664372701.10.4.utmcsr=mp.csdn.net|utmccn=(re
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值