提示:本次爬取是利用xpath进行,按文章的顺序走就OK的;
文章目录
前言
一、数据采集的准备
1.观察url规律
2.设定爬取位置和路径(xpath)
二、数据采集
1. 建立存放数据的dataframe
2. 开始爬取
3. 把数据导出成csv表格
总结
前言
这次爬取的网站是房天下网站;
其中包含很多楼盘信息:https://newhouse.fang.com/house/s/b81-b91/
我在网站上进行了一步筛选,即选取北京及北京周边的房源,各位要是想爬取其他城市的房源信息也很简单,改一下url信息即可。
一、数据采集的准备
1.观察url规律
观察到北京及周边地区的房源有很多网页,翻几页就能发现url的规律:
网址就是:https://newhouse.fang.com/house/s/ + b81-b9X + / ;其中X是页码
利用for循环遍历所有网页:
for i in range(33): # 每页20个小区,共648个小区
url = 'https://newhouse.fang.com/house/s/b81-b9' + str(i+1) + '/'
pip 安装fake_useragent库:
fake-useragent可以伪装生成headers请求头中的User Agent值,将爬虫伪装成浏览器正常操作。
!pip install fake_useragent
导入接下来会用到的包:
## 导包
from lxml import etree
import requests
from fake_useragent import UserAgent
import pandas as pd
import random
import time
import csv
设置请求参数:需要大家替换的有’cookie’和’referer’两项的值:
‘cookie’:每次访问网站服务器的时候,服务器都会在本地设置cookie,表明访问者的身份。记得每次使用时,都要按照固定方法人工填入一个 cookie。
‘referer’:请求参数,标识请求是从哪个页面过来的。
# 设置请求头参数:User-Agent, cookie, referer
headers = {
'User-Agent' : UserAgent().random,
'cookie' : "global_cookie=kxyzkfz09n3hnn14le9z39b9g3ol3wgikwn; city=www; city.sig=OGYSb1kOr8YVFH0wBEXukpoi1DeOqwvdseB7aTrJ-zE; __utmz=147393320.1664372701.10.4.utmcsr=mp.csdn.net|utmccn=(re