救命,本来只是想随手吃个瓜,没想到AI较真起来,写了份完整研究报告。
一口气查几百篇资料,从中精选出42篇参考,十几秒内洋洋洒洒3000多字。
而且这个AI不光把问题本身答好,还主动挑选了相关话题做拓展延伸。
既然是老马和Neuralink的员工生孩子,那顺便也了解一下Neuralink技术有什么新进展吧。
本来想吃瓜放松,AI却叫我去学习……
字太多懒得看?别急,一直拉到最后还有脑图、相关事件、相关组织及人物,以及更多内容四个板块。
用思维导图、表格等形式把信息结构化组织起来,更加一目了然。还可以继续推荐更多相关内容。
那么到底是谁家AI主动性这么高,把吃瓜搞成了汇报总结呢?
揭秘了:腾讯元宝,最新上线深度搜索模式。
只要AI判断你的问题比较复杂,就会在第一次回复之后附上**“深度研究该问题”**入口。
这么强大的功能,拿来吃瓜看来确实是大材小用了。
那么,什么场景更适合它发挥出真正实力呢?
体验腾讯元宝深度搜索
要考验AI深度搜索的能力,学术问题肯定跑不了。
只要选一个范围稍大的话题,腾讯元宝基础搜索模式给出的回答倒是也正确、也能搜出来最新的内容,就是看起来像搜到什么总结什么,没什么章法。
果不其然,可能AI自己也感觉到光拿出这样一个回复满足不了用户,直接端上深度搜索入口。
深度搜索模式下,有了研究大纲搭框架,内容又分成几级小标题,内容的深入和全面就都有保障了。
由于内容太长,这里我们直接放上最后的脑图,一看究竟。
其实搜索还不是腾讯元宝的全部,另一项突出能力便是长文本总结了。
如果对AI研究报告中提到的某一项具体内容感兴趣,还可以直接从参考资料里把链接拉出来,就能让AI针对性总结了。
这样一来,无需在AI搜索和AI助手之间来回跳转,一个APP或网页、甚至在微信小程序里就能搞定一套工作流程。
除了深度搜索某个具体的问题,元宝还可以这样用:总结当天的新消息,同样可以触发深入研究入口。
这样一来,研究大纲就变成了事件的目录。
接下来,每条下面的内容则是简报的形式,分为“背景”和“影响”两部分,两段话讲清来龙去脉。
最后面的“你可能还想知道”栏目,则是更多可延伸拓展的内容。
总的来看,腾讯元宝喊出的“轻松工作,多点生活”口号看来是认真的。
刚上架一个月就排到苹果App Store效率榜第34也是不错的成绩。
为什么各家都在布局AI搜索?
AI搜索,可以说是这一段时间大模型应用最火的关键词之一了。
国外巨头谷歌不用多说,AI搜索初创公司Perplexity也备受关注。
国内除了各大模型应用基本都内置内置了搜索能力,也有360AI搜索、秘塔AI搜索这样专门的AI搜索应用。
从巨头到初创公司,为什么各家都在布局AI搜索?
从需求角度来看,有数据显示,当前在大模型相关产品的使用中,超过65%的用户需求集中于提升工作与学习效率,其中“搜索问答”需求占比高达45%。在这个信息爆炸的时代,由AI代劳搜索筛选信息,也确实是很多人的刚需了。
从技术角度来看,搜索能给AI大模型提供训练数据截止日期之外的实时信息,让它面对时效性问题不会无能为力,同时也能减少因缺少知识造成的“幻觉”问题,让大模型更实用。
虽然道理是这个道理,但想把AI搜索做好并不容易。
不仅需要大模型深度理解用户的查询意图,高效的搜索算法,更要有优质的内容。
腾讯元宝基于腾讯混元大模型,在发布之初就聚焦AI搜索进行了专门的优化设计,基于微信搜索、搜狗搜索等搜索引擎,大幅度提升了搜索结果的准确性和相关性。微信生态的海量优质内容,也是确保腾讯元宝深度搜索能产出优质研究报告的保障之一。
而且腾讯在互联网大厂里一向以产品见长,此次升级的深度模式,则是在此前的基础搜索模式下,进一步拓展了问题的覆盖度和联想性。在科研、财经等专业场景下,深度搜索的效果尤为突出,深度满足专业人群需求。
事实上,非专业人士人群中,有不少AI搜索产品尝鲜者表示,用了一阵就换回传统搜索了。
因为很多时候,大家的需求就是找一个链接,或者想找到专业的内容去看,而不是要质量参差不齐的AI总结。
对于这一部分简单却高频的搜索需求,AI其实是没法完全替代传统搜索的。
所以说,像腾讯元宝推出深度搜索功能,不是来抢传统搜索饭碗的,而是想去满足那些更高层次的需求。
深度搜索会给出一份全面的分析报告,从多个维度剖析原因,附带一份漂亮的思维导图帮用户理清头绪,还会列出内容涉及的人物和组织,让用户对整个话题有一个全景式的了解。
不仅如此,基于多轮对话能力,用户还可在深度搜索模式下对问题进一步追问,开展更详细、更个性化的搜索和问答。
虽然腾讯这次没有公开深度搜索背后的技术架构,但是从搜索过程就可以看出,已经脱离了简单的调用大模型API,而是涉及不同智能体分工协作、调用不同工具的多智能体架构。
在AI大模型时代之前,分析问题-全网搜索-整理答案-产出报告这个流程,高低也得顾个助理才能办好。
现在,每个人都能拥有这样一个私人助理,还是免费的,可以把获取信息这一部分脑力劳动“外包”出去。
深度搜索,或许正在悄然改变我们获取和处理信息的方式。
如何学习大模型 AI ?
由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。
但是具体到个人,只能说是:
“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。
这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。
我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。
我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。
第一阶段(10天):初阶应用
该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。
- 大模型 AI 能干什么?
- 大模型是怎样获得「智能」的?
- 用好 AI 的核心心法
- 大模型应用业务架构
- 大模型应用技术架构
- 代码示例:向 GPT-3.5 灌入新知识
- 提示工程的意义和核心思想
- Prompt 典型构成
- 指令调优方法论
- 思维链和思维树
- Prompt 攻击和防范
- …
第二阶段(30天):高阶应用
该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。
- 为什么要做 RAG
- 搭建一个简单的 ChatPDF
- 检索的基础概念
- 什么是向量表示(Embeddings)
- 向量数据库与向量检索
- 基于向量检索的 RAG
- 搭建 RAG 系统的扩展知识
- 混合检索与 RAG-Fusion 简介
- 向量模型本地部署
- …
第三阶段(30天):模型训练
恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。
到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?
- 为什么要做 RAG
- 什么是模型
- 什么是模型训练
- 求解器 & 损失函数简介
- 小实验2:手写一个简单的神经网络并训练它
- 什么是训练/预训练/微调/轻量化微调
- Transformer结构简介
- 轻量化微调
- 实验数据集的构建
- …
第四阶段(20天):商业闭环
对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。
- 硬件选型
- 带你了解全球大模型
- 使用国产大模型服务
- 搭建 OpenAI 代理
- 热身:基于阿里云 PAI 部署 Stable Diffusion
- 在本地计算机运行大模型
- 大模型的私有化部署
- 基于 vLLM 部署大模型
- 案例:如何优雅地在阿里云私有部署开源大模型
- 部署一套开源 LLM 项目
- 内容安全
- 互联网信息服务算法备案
- …
学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。
如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。