2024 年,AI 在全球范围内掀起了热潮。相关报告显示,AI 技术正迅猛发展并深入渗透到社会经济的各个领域,从自动驾驶到医疗健康,从智能制造到智慧城市,AI 的影响力无处不在。在国内,AI 的发展同样引人注目,我国人工智能核心企业数量众多,排名全球第二,AI 技术已成为企业发展的关键要素。
一、众多企业布局智能领域,高效 AI 智能体实现降本增效
在数字化、智能化时代,AI 成为推动企业转型升级、降本增效和业务增长的重要力量,AI 智能体更是企业智能化转型的关键工具。它能够自主学习、决策和执行任务,但企业在搭建 AI 智能体时面临诸多挑战,如技术门槛高、成本投入大、开发周期长、依赖专业人才以及安全性、合规性和与现有业务流程对接等问题。
字节跳动推出的扣子 Coze 平台为企业提供了便捷的解决方案。该平台提供海量模板,覆盖营销创作、信息处理、智能客服等领域,支持零代码开发,降低了 AI 应用落地的难度。企业可通过一键复制模板并个性化修改,快速创建落地 AI 应用,如利用智能客服模板提升客户服务效率,使用数据分析模板优化决策过程,从而拓展业务边界,实现快速增长。
二、助力企业个性化搭建 AI 智能体,实现多场景落地 AI 应用
众多企业借助扣子平台强大的功能体系,在多个运营管理维度嵌入 AI 智能体,取得了显著成效。以和府捞面为例,以往人工收集整理客户意见效率低且难以挖掘有价值信息。引入扣子 AI 智能体后,产品经理在 3 周内搭建起单工作流智能体系统,深度挖掘顾客反馈数据,进行精细化分析,识别情感倾向和关键评价要素,以 JSON 格式输出 API,集成到系统中,节省人力成本的同时获取更多指导信息。
传媒行业的超音速传媒打造了 “门店导购陪练多场景智能体”,模拟门店导购场景,提供陪练、打分、分析和后续提高的全套流程,实现培训实时反馈与个性化指导,提升销售培训效率与质量。
影视娱乐公司天熹文化为旗下 “粉色挖剧机” AI 剧集社区注入新活力。面对传统生产方式的局限和多元化用户需求的挑战,天熹文化利用扣子平台在三个月内搭建 200 多个智能体,涵盖创作者和 C 端用户需求,通过平台功能实现多类复杂功能,提升内容创作效率与个性化程度,沉淀粉丝并创造额外收益。
此外,金融、科技、汽车等领域的企业也在扣子平台搭建 AI 智能体,利用平台资源和技术优势提升效率与效益,扣子平台成为企业智能化转型的重要推手。
三、扣子助力企业抢占智能化先机,优势显著引领数字化转型
扣子平台在数字化转型中优势突出,成为企业 AI 应用开发、优化流程和提升竞争力的首选。其优势首先体现在简化 AI 应用开发流程,通过直观易用的图形化界面和丰富预置组件,让非专业开发者轻松上手,搭建符合业务需求的 AI 应用,拓宽 AI 技术应用范围。
其次,平台强大的信息处理能力实现业务流程自动化和智能化,提供精准数据支持,助力企业科学决策,提高运营效率,降低运营成本。
此外,扣子平台持续创新,团队不断优化功能和升级,保持行业领先,满足企业日益增长的 AI 应用需求。扣子平台不仅助力企业抢占智能化先机,引领行业数字化转型,还为中小企业和创业者提供低成本、高效率的 AI 技术应用方案。
如何学习大模型 AI ?
由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。
但是具体到个人,只能说是:
“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。
这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。
我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。
我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。
第一阶段(10天):初阶应用
该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。
- 大模型 AI 能干什么?
- 大模型是怎样获得「智能」的?
- 用好 AI 的核心心法
- 大模型应用业务架构
- 大模型应用技术架构
- 代码示例:向 GPT-3.5 灌入新知识
- 提示工程的意义和核心思想
- Prompt 典型构成
- 指令调优方法论
- 思维链和思维树
- Prompt 攻击和防范
- …
第二阶段(30天):高阶应用
该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。
- 为什么要做 RAG
- 搭建一个简单的 ChatPDF
- 检索的基础概念
- 什么是向量表示(Embeddings)
- 向量数据库与向量检索
- 基于向量检索的 RAG
- 搭建 RAG 系统的扩展知识
- 混合检索与 RAG-Fusion 简介
- 向量模型本地部署
- …
第三阶段(30天):模型训练
恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。
到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?
- 为什么要做 RAG
- 什么是模型
- 什么是模型训练
- 求解器 & 损失函数简介
- 小实验2:手写一个简单的神经网络并训练它
- 什么是训练/预训练/微调/轻量化微调
- Transformer结构简介
- 轻量化微调
- 实验数据集的构建
- …
第四阶段(20天):商业闭环
对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。
- 硬件选型
- 带你了解全球大模型
- 使用国产大模型服务
- 搭建 OpenAI 代理
- 热身:基于阿里云 PAI 部署 Stable Diffusion
- 在本地计算机运行大模型
- 大模型的私有化部署
- 基于 vLLM 部署大模型
- 案例:如何优雅地在阿里云私有部署开源大模型
- 部署一套开源 LLM 项目
- 内容安全
- 互联网信息服务算法备案
- …
学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。
如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。