- 导读 -
完成DeepSeek大模型本地化部署,通过病情分析、病历质控等功能辅助医生全面提升诊疗服务水平。
近日,DeepSeek大模型(以下简称DS)在社会各生产领域及社交平台引起轰动,DS因其可见的“深度思考”以及温暖的“东方文字”,给人带来了不同以往的AI感受。上海交通大学医学院附属仁济医院长期以来对人工智能在医疗领域的发展保持高度关注,此前已通过CDSS辅助决策知识库、专科知识库等项目建设,为大模型的未来应用及发展奠定良好的建设模式及数据基础。
DS大模型的出现,使医院在人工智能应用领域迎来重要拐点。经过技术方案的层层落地,2月20日,医院成功完成DeepSeek大模型本地化部署,通过病情分析、病历质控等功能辅助医生全面提升诊疗服务水平。
主动切换DS升级病历内涵质控能力
病历作为医疗活动中的核心记录文件,其质量直接决定了医疗服务水平与患者安全。国家卫生健康委高度重视医院病历质量,近年提出《病历内涵质量提升行动计划(2023-2025年)》等,推动全国医院提升病历内涵质量。
在此背景下,医院积极探索人工智能(AI)等新一代技术对医疗工作质量及效率的有力推动,并于2024年8月将大模型应用于病历内涵质控工作。
相较于传统AI病历质控系统,大模型不仅能够发现此前病历中的内涵缺陷,还能够给出缺陷原因、修改建议等,辅助医生及时修改。通过与[临床决策支持系统(CDSS)]的紧密结合,大模型还能够充当医学专家,以问答形式解答医生的疑惑,辅助医生理解病历问题和病历书写逻辑。对于质控人员而言,大模型能够大幅降低质控工作量,使他们能够将更多精力和时间用于质控工作。
为进一步提升大模型病历质控准确度和效率,医院将DeepSeek-R1大模型部署到了病历质控系统。基于DS更低的成本优势和更高效的自然语言处理及推理能力等,医院病历质控系统不仅进一步提升了质控准确率,还能够同时服务更多医务工作者,为高峰期使用做好算力冗余储备。
三大功能拓展,大模型深入更多医疗环节
此次DS的切换不仅大幅提升了病历内涵质控的能力,还拓展了病历辅助生成、病情分析和文献助手三大功能。
1.病历辅助生成
病历书写常常需要耗费医生大量时间,且容易出现关键信息遗漏、书写不及时、不合理复制粘贴等功能。基于DS在语言理解和生成能力,经过CDSS的数据抓取、上线前的训练和微调等过程,DS能够自动生成一段高质量病历供医生书写时参考。同时,DS还能够生成思考过程,辅助医生理解病历书写思路和逻辑。
2.病情分析
经过大量医学文献、诊疗指南、共识等知识的学习,DS具备了理解诊断、治疗、用药等医疗过程和诊疗逻辑的能力。在临床使用时,DS能够详细分析患者病历文本,并提供切实可行的治疗方案,有效提升临床诊断准确性。面对危急重症或疑难杂症,DS也能够辅助医生进行快速筛查。
3.文献问答
临床诊疗、科研等工作都需要大量查阅各类医学资料。DS能够根据医生提问,自动调阅最新版的文献、指南等,进行快速查阅、总结、新旧版比较等,大幅降低医生查阅资料需要耗费的时间。此外,大型模型还支持灵活地导入新的文献资料,确保知识库内容的持续更新。
本地化部署进一步提升DS效率
确保医疗数据的安全性及患者隐私保护是重要前提。为此,医院选择了将昇腾服务器本地化部署策略,确保了数据的存储与处理过程完全在医院内部独立进行,从根本上消除了数据泄露及跨境传输的潜在风险。同时,本地化部署方案也有效避免了通用版DS常出现的“服务器繁忙”。该方案基于“昇思+昇腾+AI智能体”架构,适用于多种基座大模型,其中包括DeepSeek 14B到671BR1/V3版,在业务场景数据强化学习与训练基础上,可提供从异构数据集成、数据治理、AI推理、实时交互、统计分析到数据价值挖掘的一站式解决方案与服务。
为了让DS的各项能力能够在院内持续提升,医院正在积极推动院内使用,共同寻找大模型应用中的问题及解决方法,促进大模型健康持续发展。今后,医院仍将积极探索大模型的更多应用方式,与临床和管理需求进一步深度结合,着力推进医院智慧化发展水平提升,支撑医院高质量发展!
如何学习大模型 AI ?
由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。
但是具体到个人,只能说是:
“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。
这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。
我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。
我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。
第一阶段(10天):初阶应用
该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。
- 大模型 AI 能干什么?
- 大模型是怎样获得「智能」的?
- 用好 AI 的核心心法
- 大模型应用业务架构
- 大模型应用技术架构
- 代码示例:向 GPT-3.5 灌入新知识
- 提示工程的意义和核心思想
- Prompt 典型构成
- 指令调优方法论
- 思维链和思维树
- Prompt 攻击和防范
- …
第二阶段(30天):高阶应用
该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。
- 为什么要做 RAG
- 搭建一个简单的 ChatPDF
- 检索的基础概念
- 什么是向量表示(Embeddings)
- 向量数据库与向量检索
- 基于向量检索的 RAG
- 搭建 RAG 系统的扩展知识
- 混合检索与 RAG-Fusion 简介
- 向量模型本地部署
- …
第三阶段(30天):模型训练
恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。
到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?
- 为什么要做 RAG
- 什么是模型
- 什么是模型训练
- 求解器 & 损失函数简介
- 小实验2:手写一个简单的神经网络并训练它
- 什么是训练/预训练/微调/轻量化微调
- Transformer结构简介
- 轻量化微调
- 实验数据集的构建
- …
第四阶段(20天):商业闭环
对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。
- 硬件选型
- 带你了解全球大模型
- 使用国产大模型服务
- 搭建 OpenAI 代理
- 热身:基于阿里云 PAI 部署 Stable Diffusion
- 在本地计算机运行大模型
- 大模型的私有化部署
- 基于 vLLM 部署大模型
- 案例:如何优雅地在阿里云私有部署开源大模型
- 部署一套开源 LLM 项目
- 内容安全
- 互联网信息服务算法备案
- …
学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。
如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。