最近,我比较关注的两家美国公司Tempus和OpenEvidence,均有很多不错的创新实践。例如,Tempus通过多模态数据驱动肿瘤精准诊疗、OpenEvidence构建动态医学知识库重塑循证医学的实践。我也更加坚信,AI医疗的核心在于“以数据为基、以场景为锚、以生态为网”。基于卫宁健康覆盖全国数千家医院的业务系统积淀,我们正以WiNGPT、WiNEX MY和Copilot三大核心战略新产品为支点,开启一场从院内到院外、从医生到患者的医疗智能化革命。
一、战略升级:从院内系统到C端赋能的生态闭环
卫宁健康的核心优势在于深度嵌入医疗机构的业务场景。目前,全国数千家医院的电子病历、影像系统、临床路径管理等核心业务均运行在卫宁平台上,形成了庞大的结构化数据池。这一优势为AI模型的训练与迭代提供了“活水源泉”。
WiNEX MY将面临重大升级,传统的WiNEX MY主要服务于医疗机构内部的信息整合和管理,升级后其能力将向终端用户延伸,直接面向广大医生。借助云端部署的WiNGPT,平台不仅能够快速响应海量数据查询,还能利用自然语言处理和深度学习技术对医疗文献、病例分析、诊疗指南等信息进行智能检索和深度挖掘,从而为医生提供精准、高效的MedSearch服务。医生在遇到临床疑难问题时,能够通过该平台获得权威且个性化的解决方案,极大提升了临床决策的效率和准确性。
与此同时,平台可与医院内现有的WiNEX系统实现互联互通,构建了一套完整的信息生态圈。通过数据的无缝对接,医生不仅能在云端获取最新、最全的医疗知识库,还能结合本院病例、检查结果等真实数据,进行个性化分析和精准推荐。这种专属化服务不仅满足了不同专科医生的个性需求,也为医疗机构整体数字化转型提供了强有力的技术支撑。
二、技术融合:从单点突破到人机协同的智能体网络
Tempus通过整合基因组学与临床数据推动精准医疗的实践启示我们:医疗AI需打破数据孤岛,构建多模态协同的智能体网络。卫宁的WiNGPT 2.8已全面对接DeepSeek大模型,支持长文本推理与多模态数据处理,其医学知识库覆盖数百万篇文献与数千万例真实病例。在此基础上,我们进一步引入“联邦学习”技术,允许医院在数据不出域的前提下共享模型训练成果,既保障隐私安全,又提升模型泛化能力。
WiNEX Copilot则通过Multi-Agent架构实现“人机分工再定义”。未来,在复杂手术中,AI代理实时分析患者生命体征与影像数据,外科医生通过语音指令即可调取3D解剖模型与风险预测报告;在慢病管理中,虚拟数字人可自动生成随访计划,并基于患者反馈动态调整用药建议。这种协作模式将医生的经验智慧与AI的算力优势深度融合,使诊疗效率大幅提升。
三、生态重构:从工具赋能到专科智能体的进化
OpenEvidence通过动态更新医学证据库构建临床决策支持系统的经验表明,AI医疗的未来在于“场景化专属能力”。卫宁正依托医院专科化需求,打造“专科智能体”。例如,在心血管领域,AI模型可学习特定专家的诊疗风格,结合科室历史病例数据,形成“数字分身”,辅助年轻医生快速掌握复杂介入手术的决策逻辑。
这一过程中,“双模+双应用”云平台(WiN-AI卫信云)成为关键基础设施。通过内置通用模型(如WiNGPT)与专科微调模型,医院可按需调用AI能力,同时利用算力调度平台显著降低GPU成本。未来,儿科、肿瘤科等专科均可通过低代码工具快速训练专属模型,形成“千院千面”的智能服务网络。
四、挑战与展望:在创新与合规中寻找平衡
尽管前景广阔,AI医疗仍需直面三大挑战:数据安全、伦理边界与商业模式可持续性。卫宁健康通过动态加密技术确保患者隐私与知识产权安全,并将区块链技术应用于数据溯源。在伦理层面,我们主张建立“AI辅助决策可解释性标准”,要求所有推荐方案均标注数据来源与置信度,避免“黑箱风险”。
展望未来,卫宁健康的AI战略不仅是技术升级,更是一场医疗生态的重构——通过连接院内系统、C端医生赋能和健康管理、云端智能服务,我们正将离散的医疗场景整合为“感知-决策-干预”的闭环。当每一位医生拥有专属AI助手、每一位患者享受全程健康监护时,医疗将真正从“疾病治疗”迈向“健康共生”。
如何学习大模型 AI ?
由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。
但是具体到个人,只能说是:
“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。
这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。
我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。
我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。
第一阶段(10天):初阶应用
该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。
- 大模型 AI 能干什么?
- 大模型是怎样获得「智能」的?
- 用好 AI 的核心心法
- 大模型应用业务架构
- 大模型应用技术架构
- 代码示例:向 GPT-3.5 灌入新知识
- 提示工程的意义和核心思想
- Prompt 典型构成
- 指令调优方法论
- 思维链和思维树
- Prompt 攻击和防范
- …
第二阶段(30天):高阶应用
该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。
- 为什么要做 RAG
- 搭建一个简单的 ChatPDF
- 检索的基础概念
- 什么是向量表示(Embeddings)
- 向量数据库与向量检索
- 基于向量检索的 RAG
- 搭建 RAG 系统的扩展知识
- 混合检索与 RAG-Fusion 简介
- 向量模型本地部署
- …
第三阶段(30天):模型训练
恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。
到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?
- 为什么要做 RAG
- 什么是模型
- 什么是模型训练
- 求解器 & 损失函数简介
- 小实验2:手写一个简单的神经网络并训练它
- 什么是训练/预训练/微调/轻量化微调
- Transformer结构简介
- 轻量化微调
- 实验数据集的构建
- …
第四阶段(20天):商业闭环
对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。
- 硬件选型
- 带你了解全球大模型
- 使用国产大模型服务
- 搭建 OpenAI 代理
- 热身:基于阿里云 PAI 部署 Stable Diffusion
- 在本地计算机运行大模型
- 大模型的私有化部署
- 基于 vLLM 部署大模型
- 案例:如何优雅地在阿里云私有部署开源大模型
- 部署一套开源 LLM 项目
- 内容安全
- 互联网信息服务算法备案
- …
学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。
如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。