1. LSTM(Long Short-Term Memory)
LSTM 是一种特殊的循环神经网络(RNN),旨在解决 RNN 的梯度消失与梯度爆炸问题。它通过引入“门控机制”,能够在时间序列中记住长时间的依赖关系,同时避免对无关信息的记忆。
LSTM 结构
LSTM 单元的核心在于一个“细胞状态” (),它能够通过线性传递保留重要信息。此外,LSTM 包括三个门控单元:遗忘门、输入门和输出门,用于控制信息的流动。
1. 遗忘门(Forget Gate)
决定细胞状态中哪些信息需要被遗忘:
其中:
- 是 Sigmoid 激活函数,输出范围为 [0,1]。
- 是上一时间步的隐藏状态。
- 是当前输入。
- 和 是可学习的权重矩阵和偏置。
2. 输入门(Input Gate)
决定当前输入对细胞状态的更新:
细胞状态更新为:
3. 输出门(Output Gate)
决定细胞状态对隐藏状态的输出:
隐藏状态更新为:
LSTM 单元将时间序列信息通过多步迭代逐步传递,从而捕获序列的长期依赖。
2. 卷积神经网络(CNN)
卷积操作
CNN 的核心是卷积操作,用于提取输入数据的局部特征。在一维卷积中,卷积核沿时间轴滑动,对局部时间片段进行加权和。
卷积操作的公式为:
其中:
- 是输入序列。
- 是卷积核。
- 是卷积核的大小。
激活函数
为了引入非线性,卷积层的输出通常经过激活函数,如 ReLU:
池化操作
池化操作用于下采样特征图,减少计算复杂度,同时保留主要信息。常用池化方法有最大池化和平均池化。
最大池化公式:
其中 是池化窗口的大小。
3. 特殊注意点
LSTM 与 CNN 联合模型在多变量时间序列预测中的特殊注意项。
在多变量时间序列预测中,联合模型需要处理不同变量之间的相互关系,同时捕获时间序列的短期模式和长期依赖。
数据预处理
- 归一化:多变量数据可能具有不同量纲,需使用 MinMaxScaler 或 StandardScaler 将数据归一化。
- 时间窗划分:滑动窗口法用于将时间序列数据转换为模型输入。窗口大小需根据问题特点设定。
- 缺失值处理:对于时间序列中的缺失数据,可采用插值法或填充法补全。
模型设计
CNN 部分:
- 卷积核大小决定提取的局部时间片段范围,应根据变量间的相关性设定。
- 池化层可减少特征维度,但可能丢失细节信息。
LSTM 部分:
- 隐藏单元数量应根据数据复杂度设置,避免过多单元导致过拟合。
- LSTM 层数不宜过多,以免增加梯度消散风险。
联合方式:
- 使用 CNN 提取的特征作为 LSTM 的输入,可采用直接连接或通过全连接层降维。
超参数调整
滑动窗口大小:决定 CNN 的输入序列长度,影响模型对短期和长期模式的捕获。
卷积核大小:较小的卷积核捕获细粒度模式,较大的卷积核捕获粗粒度模式。
优化器与学习率:Adam 是较常用的优化器,但需根据模型表现动态调整学习率。
模型训练
批量训练:将时间序列划分为小批量训练,防止内存溢出。
损失函数:
-
对于回归任务,使用均方误差(MSE):
-
对于分类任务,使用交叉熵损失。
模型评估
回归指标:
-
均方根误差(RMSE):
-
平均绝对误差(MAE):
分类指标:准确率(Accuracy)、F1-score 等。
通过 LSTM 与 CNN 联合模型,可以充分利用 CNN 提取的局部时间特征和 LSTM 的时间依赖建模能力,从而实现对复杂时间序列的高精度预测。
完整案例
LSTM与CNN联合模型在多变量时间序列预测。
数据集设计:
假设虚拟数据集包含以下特征:
温度
(Temperature)湿度
(Humidity)风速
(Wind Speed) 目标是预测未来1小时的温度
。
生成1000条时间序列,分为训练集(80%)和测试集(20%)。
import numpy as np
import matplotlib.pyplot as plt
import torch
import torch.nn as nn
from sklearn.preprocessing import MinMaxScaler
from sklearn.metrics import mean_squared_error
# 数据生成
np.random.seed(42)
time_steps = 1000
temperature = np.sin(np.linspace(0, 100, time_steps)) + np.random.normal(scale=0.1, size=time_steps)
humidity = np.cos(np.linspace(0, 100, time_steps)) + np.random.normal(scale=0.1, size=time_steps)
wind_speed = np.random.normal(scale=0.5, size=time_steps)
data = np.vstack([temperature, humidity, wind_speed]).T
scaler = MinMaxScaler()
data_scaled = scaler.fit_transform(data)
# 数据分割
def create_dataset(data, window_size):
X, y = [], []
for i in range(len(data) - window_size):
X.append(data[i:i + window_size, :])
y.append(data[i + window_size, 0]) # 预测温度
return np.array(X), np.array(y)
window_size = 10
X, y = create_dataset(data_scaled, window_size)
X_train, X_test = X[:800], X[800:]
y_train, y_test = y[:800], y[800:]
# 转换为Tensor
X_train, y_train = torch.tensor(X_train, dtype=torch.float32), torch.tensor(y_train, dtype=torch.float32)
X_test, y_test = torch.tensor(X_test, dtype=torch.float32), torch.tensor(y_test, dtype=torch.float32)
# 模型定义
class CNN_LSTM(nn.Module):
def __init__(self):
super(CNN_LSTM, self).__init__()
self.cnn = nn.Conv1d(in_channels=3, out_channels=16, kernel_size=3, padding=1)
self.lstm = nn.LSTM(input_size=16, hidden_size=32, batch_first=True)
self.fc = nn.Linear(32, 1)
def forward(self, x):
x = x.permute(0, 2, 1) # 转换为CNN的输入格式 (batch, channels, time)
x = self.cnn(x)
x = x.permute(0, 2, 1) # 转换为LSTM的输入格式
x, _ = self.lstm(x)
x = self.fc(x[:, -1, :]) # 只取最后时间步的输出
return x
# 模型实例化
model = CNN_LSTM()
criterion = nn.MSELoss()
optimizer = torch.optim.Adam(model.parameters(), lr=0.001)
# 模型训练
num_epochs = 50
train_loss_history = []
for epoch in range(num_epochs):
model.train()
optimizer.zero_grad()
output = model(X_train)
loss = criterion(output.squeeze(), y_train)
loss.backward()
optimizer.step()
train_loss_history.append(loss.item())
if (epoch + 1) % 10 == 0:
print(f"Epoch {epoch + 1}, Loss: {loss.item():.4f}")
# 测试集预测
model.eval()
with torch.no_grad():
predictions = model(X_test).squeeze()
# 结果可视化
plt.figure(figsize=(14, 6))
# 图1: 训练损失
plt.subplot(2, 2, 1)
plt.plot(train_loss_history, label='Training Loss', color='blue')
plt.xlabel('Epochs')
plt.ylabel('Loss')
plt.title('Training Loss Over Epochs')
plt.legend()
# 图2: 真实值与预测值对比
plt.subplot(2, 2, 2)
plt.plot(y_test, label='True Values', color='green')
plt.plot(predictions, label='Predictions', color='red')
plt.xlabel('Time Steps')
plt.ylabel('Temperature')
plt.title('True vs Predicted Temperatures')
plt.legend()
# 图3: 预测误差
plt.subplot(2, 2, 3)
errors = predictions - y_test
plt.hist(errors.numpy(), bins=20, color='purple')
plt.xlabel('Prediction Error')
plt.ylabel('Frequency')
plt.title('Prediction Error Distribution')
# 图4: 滑动窗口效果
plt.subplot(2, 2, 4)
plt.plot(data_scaled[:50, 0], label='Temperature (Scaled)', color='cyan')
plt.axvline(x=window_size, linestyle='--', color='grey', label='Prediction Start')
plt.xlabel('Time Steps')
plt.ylabel('Scaled Temperature')
plt.title('Sliding Window Representation')
plt.legend()
plt.tight_layout()
plt.show()
1. 模型架构:增加CNN层的数量以提取更多细粒度特征。尝试双向LSTM以增强时间信息。
2. 调参流程:
- 学习率调整:使用学习率调度器动态调整学习率。
- 正则化:添加Dropout防止过拟合。
- 滑动窗口大小:通过交叉验证选择最佳值。
3. 特征工程:
- 添加派生特征(如温度变化率)。
- 使用主成分分析(PCA)降低维度。
如何学习大模型 AI ?
由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。
但是具体到个人,只能说是:
“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。
这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。
我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。
我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。
第一阶段(10天):初阶应用
该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。
- 大模型 AI 能干什么?
- 大模型是怎样获得「智能」的?
- 用好 AI 的核心心法
- 大模型应用业务架构
- 大模型应用技术架构
- 代码示例:向 GPT-3.5 灌入新知识
- 提示工程的意义和核心思想
- Prompt 典型构成
- 指令调优方法论
- 思维链和思维树
- Prompt 攻击和防范
- …
第二阶段(30天):高阶应用
该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。
- 为什么要做 RAG
- 搭建一个简单的 ChatPDF
- 检索的基础概念
- 什么是向量表示(Embeddings)
- 向量数据库与向量检索
- 基于向量检索的 RAG
- 搭建 RAG 系统的扩展知识
- 混合检索与 RAG-Fusion 简介
- 向量模型本地部署
- …
第三阶段(30天):模型训练
恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。
到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?
- 为什么要做 RAG
- 什么是模型
- 什么是模型训练
- 求解器 & 损失函数简介
- 小实验2:手写一个简单的神经网络并训练它
- 什么是训练/预训练/微调/轻量化微调
- Transformer结构简介
- 轻量化微调
- 实验数据集的构建
- …
第四阶段(20天):商业闭环
对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。
- 硬件选型
- 带你了解全球大模型
- 使用国产大模型服务
- 搭建 OpenAI 代理
- 热身:基于阿里云 PAI 部署 Stable Diffusion
- 在本地计算机运行大模型
- 大模型的私有化部署
- 基于 vLLM 部署大模型
- 案例:如何优雅地在阿里云私有部署开源大模型
- 部署一套开源 LLM 项目
- 内容安全
- 互联网信息服务算法备案
- …
学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。
如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。