智慧农业 | 基于物联网的智慧农业能力平台建设及平台架构功能方案解析

智慧农业物联网平台解决方案

本文主要介绍智慧农业物联网平台解决方案,涵盖智慧农业概念、中国农业面临的问题、产业化和信息化发展方向、物联网在农业中的应用,以及智慧农业能力平台架构、典型扩展性应用等内容,旨在通过物联网技术解决农业生产中的诸多问题,推动农业现代化发展。

1. 智慧农业基础认知

1.1 智慧农业概念阐述

2015 年 “互联网 +” 重点工作方案中明确了 “互联网 +” 农业的三项重点工作,包括农产品质量安全追溯体系建设、农业物联网示范以及强化 “三农” 信息服务 。智慧农业融合了互联网、移动互联网、云计算和物联网技术,依托部署在农业生产现场的传感节点和无线通信网络,实现精准化种植、可视化管理和智能化决策。同时,“互联网 +” 农业运用 “3S”(GIS、GPS、RS)、IT 技术,结合多种农业技术改造农业产业链,打造涵盖农业全产业链的大数据云平台,实现农业安全、绿色、高效发展。

img

img

1.2 智慧农业核心要素剖析

智慧农业的核心要素包含远程智能监控、多网融合、标准生产管理等。借助智能传感、智能控制、智能网关等设备实现精确化数据采集,通过智能化统计分析为决策提供支持,利用便捷化操作管理提升生产效率。同时,产品安全追溯保障农产品质量,农技指导咨询为农业生产提供专业知识,市场网络营销拓展农产品销售渠道。

img

1.3 中国农业现存问题探究

中国农业面临资金投入不足的问题,受 “农民不挣钱” 传统思想影响,投资回报率虽高但资金投入不足。中间流通环节过多导致农产品价格倒挂,农民利润微薄,市民买菜价格高昂。新技术应用推广困难,农业人对新技术接受度低,科研院所推广存在制度障碍。农业品牌化可信度差,农产品生产加工透明度低,如三聚氰胺牛奶、瘦肉精事件等,降低了消费者信赖度 。

img

img

2. 智慧农业发展方向

2.1 产业化和信息化是未来趋势

产业化和信息化是中国农业的未来发展方向。随着进一步城镇化,农业人口减少,人均耕地增加,自动化生产可降低人工成本,生鲜直送能减少中间流通环节,土地流转政策的完善推动土地集约化,这些都有助于提高农业生产效率,促进农业现代化发展。

img

2.2 物联网带动农业智慧化变革

物联网在农业多个领域发挥重要作用,如设施农业中基于物联网服务简化管理流程,提升智能化管理效率;凭借大数据分析和人工智能实现科学决策;通过实时监控和数据共享建立应急保障联动 。在水产养殖、大棚种植等方面,物联网技术实现精准监测和控制,提高生产效益。

img

2.3 精品网络提供资源保障

三大精品网络,即 4G 网、全光网、IoT 网,为智慧农业提供基础资源保障。高低频协同的高品质 4G 网实现网络广覆盖和大容量;端到端高品质全光网在乡镇以上全面光纤化,城市实现千兆接入,并通过加强数据调度提升访问质量;广覆盖质量优的 IoT 网与 LTE800M 同步部署,以低频模式提升覆盖性,持续优化接入 。

img

2.4 NB-IoT 成为技术热点

NB-IoT 具有广覆盖、低功耗、大连接、低成本等优势,在智慧林业、渔业、畜牧、大棚、灌溉等领域应用广泛。其窄带功率谱密度提升、简化协议降低成本、芯片功耗低等特点,满足了农业物联网对设备低功耗、长续航的需求 。

img

3. 智慧农业物联网平台详解

3.1 智慧农业能力平台定位

智慧农业能力平台将核心能力对外开放,面向应用提供商实现快速对接和拓展,面向各终端实现多终端、广能力的汇聚及开放支持。支持多种协议适配,如 LoRa、2/3/4G、NB-IOT、RFID、Wi-Fi、ZigBee、蓝牙等,为智慧监控、智慧灌溉、智慧种植、智慧养殖、智慧大棚等应用提供支撑。

img

3.2 基于物联网的平台解决方案

依托智慧农业能力平台开放核心能力和资源,与产业各方合作,广泛适配终端,汇聚丰富应用及服务。通过提升用户感知和粘性,增强对终端、应用、服务商的影响力,对接智慧城市需求,打造基于物联网的全新信息农业模式 。

img

3.3 平台整体架构与分层模型

智慧农业能力平台整体架构涵盖业务层、数据层、能力层、交互层和接入层。业务层包含果园生产、大棚监控等多种农业应用场景;数据层负责数据的采集、处理、存储和分析;能力层提供网络安全服务、数据服务等多种能力;交互层实现语音交互等功能;接入层连接各类物联网设备。分层模型中,应用层提供应用管理、交互控制管理等功能;能力层提供多种服务和能力;数据层进行数据处理;接入层实现设备接入管理。

img

img

3.4 智能农业云平台价值链分析

智能农业云平台涉及多个参与方,政府部门借此提高监管效率,提供政策引导;科研院所获取科研方向信息和成果转化;消费者获得产品精准信息,实现放心消费;农业生产资料商、农技部门等也能获取相应信息,实现精准生产和技术推广。

img

3.5 农业物联网系统架构

农业物联网系统架构包括传感层、局域网、互联网、监管层和应用层。传感层通过各类传感器采集空气温湿度、土壤水分等数据;局域网和互联网实现数据传输;监管层进行数据监管;应用层涵盖温室种植、水产养殖、畜牧养殖等多种应用场景 。

img

4. 智慧农业物联网典型扩展性应用

4.1 农业监测

结合农业气象环境信息、遥感图像信息等,利用多传感器数据融合、数据挖掘和云计算技术,对农作物生长趋势进行预测,对农作物四情(墒情、苗情、虫情、灾情)进行预警分析,及时提醒用户预防。基于 GIS 技术的农业环境监测系统,对空气、土壤、水质等进行监测,保障农业环境质量 。

img

img

4.2 智慧大棚

智慧大棚利用物联网技术,通过传感器采集土壤湿度、成分、PH 值等数据,经模型分析自动调控温室环境,实现灌溉和施肥作业的精准控制,达到大棚集约化、网络化远程管理以及信息智能化监测和自动化操作管理 。

img

4.3 智慧畜牧

智慧畜牧借助物联网技术,通过特定传感器实时采集牲畜体温、位置等信息,利用大数据分析和特定算法监控和预测牲畜的排卵期、疾病、受伤、走失等情况,实现对牲畜养殖、栋舍管理和防疫出栏的远程指导 。

img

4.4 智慧灌溉

基于物联网的大田种植智能化管理系统,针对大田种植特点,利用高精度土壤温湿度传感器和智能气象站采集数据,实现墒情自动预报、灌溉用水量智能决策和远程自动控制灌溉设备,达到精耕细作、合理灌溉的目的 。

img

4.5 农业病虫害智能诊断与预警系统

该系统通过线下基层上报、农科员调查、终端实时采集数据,结合专家模型和云端计算,实现灾前预警、灾中指导、灾后评估。通过图像视频采集监测病虫害情况,进行智能识别和诊断,发布预警信息 。

img

4.6 专家数据库与农技推广系统

系统根植于庞大的农业动态数据库和实战专家群组,提供农业技术知识查询,连接农户与专家实时在线互动,解决农业实践问题,并结合互联网推广技术实现农技推广 。

img

4.7 农产品溯源防伪系统

农产品溯源防伪系统通过物联网采集农作物生长数据,结合识别技术,连接农产品生产、检验、监管和消费环节,建立食品安全信息数据库,实现 “从田间到餐桌” 的追溯,提高农产品质量控制能力和消费者购买信心 。其核心功能包括对农产品种植、生产、加工等关键环节的监督监控,以及消费者通过手机扫码查看农产品档案和实时视频环境等 。

img

img

img

4.8 农业 O2O 电商平台

农业 O2O 电商平台是集网上洽谈交易、网上竞价交易、网上结算等多种功能于一体的农产品第三方电子商务公共服务平台。该平台提供政府监管、质量安全追溯等解决方案,促进农产品流通,打造农产品交易、价格、结算和物流配送中心 。

img

如何学习大模型 AI ?

由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。

但是具体到个人,只能说是:

“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。

这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。

我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。

我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。

在这里插入图片描述

第一阶段(10天):初阶应用

该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。

  • 大模型 AI 能干什么?
  • 大模型是怎样获得「智能」的?
  • 用好 AI 的核心心法
  • 大模型应用业务架构
  • 大模型应用技术架构
  • 代码示例:向 GPT-3.5 灌入新知识
  • 提示工程的意义和核心思想
  • Prompt 典型构成
  • 指令调优方法论
  • 思维链和思维树
  • Prompt 攻击和防范

第二阶段(30天):高阶应用

该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。

  • 为什么要做 RAG
  • 搭建一个简单的 ChatPDF
  • 检索的基础概念
  • 什么是向量表示(Embeddings)
  • 向量数据库与向量检索
  • 基于向量检索的 RAG
  • 搭建 RAG 系统的扩展知识
  • 混合检索与 RAG-Fusion 简介
  • 向量模型本地部署

第三阶段(30天):模型训练

恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。

到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?

  • 为什么要做 RAG
  • 什么是模型
  • 什么是模型训练
  • 求解器 & 损失函数简介
  • 小实验2:手写一个简单的神经网络并训练它
  • 什么是训练/预训练/微调/轻量化微调
  • Transformer结构简介
  • 轻量化微调
  • 实验数据集的构建

第四阶段(20天):商业闭环

对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。

  • 硬件选型
  • 带你了解全球大模型
  • 使用国产大模型服务
  • 搭建 OpenAI 代理
  • 热身:基于阿里云 PAI 部署 Stable Diffusion
  • 在本地计算机运行大模型
  • 大模型的私有化部署
  • 基于 vLLM 部署大模型
  • 案例:如何优雅地在阿里云私有部署开源大模型
  • 部署一套开源 LLM 项目
  • 内容安全
  • 互联网信息服务算法备案

学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。

如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。

这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费

在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值