AgentClinic: a multimodal agent benchmark to evaluate AI in simulated clinical environments
摘要
在临床场景中评估大型语言模型(LLM)对于评估其潜在的临床效用至关重要。现有的基准测试主要依赖于静态问答,这不能准确描述临床决策的复杂性和顺序性。在这里,我们介绍AgentClinic,一个用于评估模拟临床环境中LLM的多模态代理基准测试,其中包括患者互动、在不完整信息下进行的多模态数据收集,以及各种工具的使用,从而在九个医学专业和七种语言中进行深入评估。我们发现,在AgentClinic的顺序决策格式中解决MedQA问题要困难得多,导致诊断准确率可能降至原始准确率的十分之一以下。总体而言,我们观察到,来自克洛德-3.5的代理在大多数设置中优于其他LLM骨干。尽管如此,我们看到LLM在使用工具(如经验学习、自适应检索和反思循环)的能力上存在显著差异。引人注目的是,Llama-3在使用笔记本电脑工具时表现出高达92%的相对改进,该工具允许编写和编辑跨病例持久的笔记。为了进一步审查我们的临床模拟,我们利用真实的电子健康记录,进行临床读者研究,用偏见扰动代理,并探索这一互动环境首次能够实现的新型以患者为中心的指标。
https://agentclinic.github.io/
https://github.com/samuelschmidgall/agentclinic
引言
人工智能(AI)的主要目标之一是构建能够解决各种问题的交互式系统。医疗AI领域继承了这一目标,希望开发出能够解决可改善患者结果的AI系统。最近,许多通用大型语言模型(LLMs)已经展示出解决难题的能力,其中一些难题甚至对人类来说都具有挑战性(Thirunavukarasu等人,2023年)。在这些模型中,LLMs在短时间内迅速提高了美国医学执照考试(USMLE)的平均分数,从2021年9月的38.1%(Gu等人,2021年)提高到2023年11月的90.2%(Nori等人,2023年)(人类及格分数为60%,人类专家分数为87%(Liévin等人,2023年))。虽然这些LLMs并非设计用来替代医疗从业者,但它们对于改善全球超过40%面临有限医疗服务获取机会的人口(Organization等人,2016年)以及日益紧张的全球医疗体系(McIntyre和Chow,2020年)的医疗可及性和规模可能是有益的。
然而,这些系统在实际临床环境中的应用仍然存在限制。近期,大型语言模型(LLMs)已展示出编码临床知识的能力(Singhal等人,2023年;Vaidya等人,2023年)、检索相关医学文本的能力(熊等人,2024年)以及执行准确的单轮医学问答的能力(陈等人,2023年;Lévin等人,2022年;Nori等人,2023年;Wu等人,2023年)。然而,临床工作是一种涉及顺序决策的多任务活动,要求医生在有限的信息和资源下处理不确定性,同时富有同情心地照顾患者并从他们那里获取相关信息。当前,这种能力并未反映在静态的多项选择题评估中(这在最近的文献中占主导地位),其中所有必要信息都以病例简介的形式呈现,LLMs的任务是回答问题,或者仅为给定问题选择最合理的答案选项。
在这项工作中,我们引入了AgentClinic,一个开源的多模态代理基准,用于模拟临床环境。我们在以往的工作基础上进行了改进,通过使用语言代理以及病人和医生代理来模拟临床环境的许多部分。通过与测量代理的互动,医生代理可以通过对话执行模拟的医疗检查(例如体温、血压、心电图)并订购医学影像读片(例如磁共振成像、X光)。我们还支持代理表现出24种已知存在于临床环境中的不同偏见的能力。我们还展示了来自9个医学专科的环境、7种不同的语言,以及一项关于整合各种代理工具和推理技术的研究。此外,我们的评估指标超越了诊断准确性,强调了患者代理,采用了诸如患者依从性和咨询评级等度量标准。
我们的主要贡献总结如下:
- 我们通过引入AgentClinic,挑战了如何评估用于医学诊断的大型语言和视觉模型。这些诊断挑战不是静态的问答任务,而是交互式的、对话驱动的、顺序决策环境,需要收集数据、安排适当的医学检查,并理解具有独特家族史、生活习惯、年龄类别和疾病的患者的医学图像。
- 一个可以整合可能影响患者和医生代理对话和决策的复杂偏见的系统。我们展示了受认知和隐性偏见影响的代理在诊断准确性和患者感知方面的结果。我们发现,医生和患者的偏见会降低诊断准确性,影响患者遵循治疗的意愿(依从性),减少患者对其医生的信任,并降低后续咨询的意愿。
- 我们引入了基于真实临床案例构建的患者代理,这些案例来源于电子健康记录数据,包括一个基于现实疾病测试结果的模拟医学检查(例如体温、血压、心电图)的代理系统。我们还介绍了来自九个医学专科和七个多语言环境的患者案例,以更好地支持专业应用和多样化的语言背景。我们还展示了临床医生对生成对话的现实感和同理心评分。
- 我们允许医生代理使用各种工具,如浏览网页、教科书、进行反思周期、在笔记本中记录和编辑笔记,该笔记本在不同患者场景中可以持续使用。我们展示了当前的LLM在使用这些工具时存在巨大的差异,有些模型显示出大幅度的准确率提升,而其他模型的准确率则有所下降。
核心速览
研究背景
-
研究问题
:这篇文章要解决的问题是如何在模拟的临床环境中评估大型语言模型(LLMs)的潜力,特别是其在医疗诊断中的应用。现有的基准测试主要依赖于静态问答,无法准确反映临床决策的复杂性和顺序性。
-
研究难点
:该问题的研究难点包括:临床决策的复杂性、顺序性、信息不完全下的多模态数据收集、以及各种工具的使用。
-
相关工作
:该问题的研究相关工作有:现有的医学知识编码、医学文本检索和单轮医学问答任务。然而,这些工作未能充分反映临床决策的顺序性和复杂性。
研究方法
这篇论文提出了AgentClinic,一个多模态代理基准,用于在模拟的临床环境中评估LLMs。具体来说,
-
多模态代理:AgentClinic使用四个语言代理:患者代理、医生代理、测量代理和调解员代理。每个代理都有特定的指令和信息,这些信息仅对该代理可见。医生代理的性能是被评估的对象,其他三个代理用于提供评估。
-
代理偏见:为了模拟临床环境中的复杂偏见,论文引入了认知偏见和隐性偏见。这些偏见通过在代理的系统提示中添加上下文来引入,例如性取向偏见和种族偏见。
-
代理构建:代理基于从美国医学执照考试(USMLE)、去识别的电子健康记录(MIMIC-IV)和新英格兰医学杂志(NEJM)案例挑战中随机抽取的诊断问题构建。代理被提示以对话形式进行诊断,并使用结构化JSON文件提供病例研究信息。
-
多语言和专业病例:多语言患者病例从AgentClinic-MedQA转换为目标语言,并由母语者手动校正。专业病例使用MedMCQA数据集中的病例报告问题。
实验设计
-
数据收集
:实验使用了来自USMLE、MIMIC-IV和NEJM的数据集。USMLE数据集用于构建OSCE模板,MIMIC-IV数据集用于模拟实际的医学检测结果,NEJM数据集用于模拟实际的医学影像诊断。
-
样本选择
:从USMLE、MIMIC-IV和NEJM数据集中分别选择了诊断问题和病例,构建了多模态代理的输入数据。
-
参数配置
:每个模型作为医生代理,尝试通过与患者代理的对话进行诊断。医生代理被允许与患者代理和测量代理进行最多20次交互,然后必须做出诊断。
结果与分析
-
模型比较:在AgentClinic-MedQA上,Claude-3.5的平均准确率为62.1%,而GPT-4为51.6%。Mixtral-8x7B的准确率最低,为37.1%。在AgentClinic-MIMIC-IV上,Claude-3.5的准确率为42.9%,GPT-4为34.0%。
-
偏见对诊断准确性的影响:认知偏见导致GPT-4的准确率下降92%,而隐性偏见对患者代理的影响较小,但对医生代理的影响较大。
-
专业和多语言病例:在不同医学专业的病例中,Claude-3.5在内科、耳鼻喉科和妇科的准确率最高,分别为78.3%、76.7%和74.3%。在多语言环境中,Claude-3.5在所有语言中的平均准确率为48.4%,而GPT-4在英语中的准确率为40.2%。
-
工具的影响:不同的工具对模型性能有显著影响。Claude-3.5在使用笔记本工具时准确率最高,达到56.1%。Llama-3在使用笔记本和反思循环工具时表现出最大的相对改进,分别为19.7%。
论文评价
优点与创新
-
多模态评估框架
:AgentClinic引入了一个多模态的代理基准,能够在模拟的临床环境中评估大型语言模型(LLMs),包括患者互动、在不完全信息下的多模态数据收集以及各种工具的使用。
-
复杂的偏见模拟
:系统能够纳入复杂的偏见,这些偏见会影响患者和医生代理的对话和决策,揭示了现实临床环境中存在的认知和隐性偏见对诊断准确性的影响。
-
真实临床案例
:引入了基于真实电子健康记录数据的患者代理,包括模拟医学检查的代理系统,覆盖了九个医学专业和七种不同语言的环境。
-
工具使用多样性
:允许医生代理使用各种工具,如浏览网页、教科书、进行反思循环以及在不同患者场景中编辑笔记,展示了当前LLMs在使用这些工具方面的显著差异。
-
详细的评估指标
:评估指标不仅限于诊断准确性,还包括患者依从性和咨询评分,提供了更全面的临床技能评估。
不足与反思
-
简化的临床环境
:当前的工作仅包括代表患者、医生、测量和调解员的代理,可能忽略了医院环境中的其他关键角色,如护士、患者亲属、管理者和保险联系人。
-
物理约束的考虑
:未来的工作可以考虑在模拟世界中创建代理,以便考虑物理约束,如在有限医院空间内做出决策。
-
人口统计偏见的角色
:未来工作可以探索种族和性别等人口统计偏见的作用,这些偏见在MIMIC-IV数据中有详细描述。
-
训练数据的不确定性
:对于专有模型如GPT-4和Claude 3.5的训练数据存在不确定性,可能存在数据泄露的问题。未来工作应开发更不易被预训练语料库包含的评估数据集,或与模型开发者合作以确保公平评估。
-
自识别能力的优势
:未来工作可以探索LLMs在同时充当患者和医生代理时的优势,因为LLMs能够高精度地识别自己的文本,并表现出对这些文本的偏好。
关键问题及回答
问题1:AgentClinic如何模拟临床环境中的多模态数据收集?
AgentClinic通过四个语言代理模拟临床环境中的多模态数据收集:患者代理、医生代理、测量代理和调解员代理。医生代理通过与患者代理的对话进行诊断,请求测量代理提供的医学检测结果,并可能要求进行医学影像检查。测量代理返回具体的检测结果,如体温、血压、心电图(EKG)结果等。此外,AgentClinic还支持医生代理使用各种工具,如互联网和教科书进行医学研究,以获取更多诊断信息。通过这种方式,AgentClinic能够模拟真实临床环境中的多模态数据收集过程。
问题2:在AgentClinic中,哪些偏见对诊断准确性有显著影响?
在AgentClinic中,认知偏见和隐性偏见对诊断准确性有显著影响。认知偏见包括最近相似病例的偏差(recency bias)、频率偏差(frequency bias)等,这些偏见会导致医生代理过于依赖最近的病例或常见诊断,从而影响诊断的准确性。隐性偏见则包括性别偏见、种族偏见和文化偏见等,这些偏见会影响医生代理和患者代理之间的互动,导致医生代理对某些群体的诊断更为保守或偏见。实验结果表明,认知偏见可能导致GPT-4的准确率下降92%,而隐性偏见对患者代理的影响较小,但对医生代理的影响较大。
问题3:AgentClinic在不同医学专业和语言环境中的表现如何?
在不同医学专业中,AgentClinic的表现存在显著差异。Claude-3.5在内科学、耳鼻喉科和妇产科的准确率最高,分别为78.3%、76.7%和74.3%。在其他医学专业中,如急诊医学、老年医学、药理学、精神病学、眼科、耳鼻喉科和儿科,Claude-3.5也表现出色,平均准确率为66.7%。在多语言环境中,Claude-3.5在所有语言中的平均准确率为48.4%,而GPT-4在英语中的准确率为40.2%。其他语言如中文、印地语、韩语、西班牙语、法语和波斯语的准确率则较低,显示出在不同语言环境中的挑战性。
如何学习大模型 AI ?
由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。
但是具体到个人,只能说是:
“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。
这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。
我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。
我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。
第一阶段(10天):初阶应用
该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。
- 大模型 AI 能干什么?
- 大模型是怎样获得「智能」的?
- 用好 AI 的核心心法
- 大模型应用业务架构
- 大模型应用技术架构
- 代码示例:向 GPT-3.5 灌入新知识
- 提示工程的意义和核心思想
- Prompt 典型构成
- 指令调优方法论
- 思维链和思维树
- Prompt 攻击和防范
- …
第二阶段(30天):高阶应用
该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。
- 为什么要做 RAG
- 搭建一个简单的 ChatPDF
- 检索的基础概念
- 什么是向量表示(Embeddings)
- 向量数据库与向量检索
- 基于向量检索的 RAG
- 搭建 RAG 系统的扩展知识
- 混合检索与 RAG-Fusion 简介
- 向量模型本地部署
- …
第三阶段(30天):模型训练
恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。
到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?
- 为什么要做 RAG
- 什么是模型
- 什么是模型训练
- 求解器 & 损失函数简介
- 小实验2:手写一个简单的神经网络并训练它
- 什么是训练/预训练/微调/轻量化微调
- Transformer结构简介
- 轻量化微调
- 实验数据集的构建
- …
第四阶段(20天):商业闭环
对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。
- 硬件选型
- 带你了解全球大模型
- 使用国产大模型服务
- 搭建 OpenAI 代理
- 热身:基于阿里云 PAI 部署 Stable Diffusion
- 在本地计算机运行大模型
- 大模型的私有化部署
- 基于 vLLM 部署大模型
- 案例:如何优雅地在阿里云私有部署开源大模型
- 部署一套开源 LLM 项目
- 内容安全
- 互联网信息服务算法备案
- …
学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。
如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。