AI智能体:手把手带你用扣子搭建知识库,还能自动收集客户需求

过去接了不少提示词的商单。

提示词传播太快、可替代性高,这是一部分问题。流量不够,这也是个问题。

如今扣子的用户群体规模庞大,是否能搭建一个提示词教学的智能体,同时把定制化需求 自动收集到飞书表格 中呢?

你是否也和我一样,想过在分享知识的同时,也能收获更多商机呢?

接下来,我们来看看如何借助扣子完成这个目标的。

一、创建知识库

之前没有写过知识库的创建教程,这次会写稍微细一点。

一般搭建知识库问答助手时,我们需要提前准备知识库文件。

这些文件要么来自企业或个人本地,要么来自个人账号下的云文档平台,要么源自互联网。

所以我将从个人本地,以及小报童中的部分章节中挑选内容,作为知识库的源头。

个人空间 点击 知识库 > 创建知识库.

可以选择不同的知识类型,支持文本、表格、照片。本次我选择了文本格式。

导入内容可以支持本地文件,在线网页内容、Notion、飞书文档、还可以完全自定义内容。

本次我选择了本地过去积累的提示词基本文档,其中一部分来自我的小报童中。

支持文件格式也挺丰富的。支持格式:PDF、TXT、DOC、DOCX、MD。

分段的方式支持 自定义自动分段与清晰

自定义中,可以设定分段的标识符、分段长度,和一些预处理规则。

本次文件内容没有特殊需要处理的地方,直接选择了默认的自动分段与清洗。

数据处理完后点击 确认.

我们可以看到知识库的内容被切割成不同的段落.

二、搭建工作流

接下来,我们来搭建工作流。

建议各位小伙伴在搭建相对复杂的工作流时,可以提前画一画。

利用在线工具,比如 Process On、Mermaid ,或者在纸上梳理一下,这样搭建起来效率更高。

这是我搭建后的 Coze 工作流,接下来我来拆解下。

怎么识别用户输入的到底是提示词的问题,还是想要定制提示词,我这边利用了「意图识别」节点。

官方介绍文档:https://www.coze.cn/docs/guides/intent_recognition_node

有小伙伴可能会问,「意图识别」和之前用过的「选择器」的区别是什么?

简而言之,选择器完全遵从设置的规则,意图识别是基于大模型的语义理解来确定分支的流向。

一)提示词问答分支

接下来,先看提示词问答的分支。

在这个部分,首先需要选择「知识库」节点,将「开始」节点中用户每轮的输入作为知识库查询的问题。

再选择第一步,我们搭建的知识库:提示词基础知识。这里涉及到几个参数,官方解释地很到位,我这边就不重复造轮子了。

测试下搜索出来的效果如何。由于设置参数:最大召回数量为 3,所以这边得到了 3 个结果。

内容的确来自本地文件,然而内容太过冗长,杂质也不少。这样回复给用户,肯定是不行的。

那接下来,我们增加「大模型」节点,将知识库搜索的结果作为 参考文本,再基于用户的问题进行回答,这样才会得到一段准确的回答。

这个过程实际上就是 RAG 的核心。总结如下:先将源文件分段后进行向量化,再基于用户的提问匹配到最为接近的答案,最后交给大模型来优化回答。

提示词:

忘记你已有的知识,仅使用{{knowledge}}中的内容作为你的知识,回答用户的问题{{question}}: 思考流程:1. 判断问题{{question}}是否与{{knowledge}}标记中的内容有关。2. 如果有关,你按下面的要求回答。3. 如果无关,你直接拒绝回答本次问题。回答要求:- 保持答案与中描述的一致。- 使用 Markdown 语法优化回答格式。- 使用与问题{{question}}相同的语言回答。   

最后将输出结果返回给**「结束」**节点。

二)提示词定制化分支

过去承接了不少提示词定制化商单,价格在 500 至 3000 元不等。

过去收集需求,通常借助飞书问卷这种方式。

当然,这次搭建了提示词入门学习的智能体,也期待能获得一些定制化提示词的商机。

那我们提前需要准备一个简单的飞书多维表格。

那收集这些需求和联系方式,在扣子的工作流该怎么做呢?

这次我们将接触一个新节点 – 「问答」。主要是帮助我们在工作流中收集用户需求、用户信息,用来获取用户意图。

官方文档:https://www.coze.cn/docs/guides/question_node

问答节点,提供两种收集信息的方式,第一种:直接回答,适合内容不确定,发散的情况。

第二种,选项回答,适合固定的回答方式。

在这个工作流中,我主要需收集 受众、痛点、预期效果微信号。问题较多,我将其分成了 2 次收集。

记得勾选:从回复中提取字段。并且设置需要从回答中提取的关键字段。

这里的原理很简单:借助大模型的语义理解能力,提取用户回答内容中的关键信息。

那么信息收到之后,接下来我们该怎么样传入飞书的多维表格呢?

记得之前教学飞书插件时,示例的数据格式是这样的:

问答」节点的输出结果肯定不满足这样的格式。

没办法,再转换一次。我们可以利用「代码」节点来转换。

代码」节点后续再单独解释,这次直接提供参考代码,大家可以参考着改。

async def main(args: Args) -> list:    params = args.params    ret = []    record = {        "微信号":params["wechat"],        "受众人群":params["users"],        "痛点":params["problem"],        "预期效果":params["result"]    }    fields = {        "fields": record    }    ret.append(fields)    return ret   

格式搞定后,接下来引入插件 – 飞书多维表格 / add_records

将插件的关键信息配置好:

  • app_token 是多维表格的 url 链接

  • records 来自代码节点转换后的结果

最后传入「 结束」节点。测试下工作流,没问题后记得点击 发布

三、搭建 Bot

配置人设与回复,并选择之前创建的工作流。

测试一下效果。

测试定制化提示词的场景。

成功传入飞书。

这次仅仅是为了展示搭建思路,该智能体仍有很大的优化空间 。

四、总结

本次我用扣子搭建了一套提示词基础入门的智能体。

利用智能体把需求收集到飞书表格,构建了一整套自动化需求收集流程。

如果我们有一套细分领域的专家智能体,通过这种近乎零成本的方式,就能为我们带来可观的商机。

如何学习大模型 AI ?

由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。

但是具体到个人,只能说是:

“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。

这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。

我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。

我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。

在这里插入图片描述

第一阶段(10天):初阶应用

该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。

  • 大模型 AI 能干什么?
  • 大模型是怎样获得「智能」的?
  • 用好 AI 的核心心法
  • 大模型应用业务架构
  • 大模型应用技术架构
  • 代码示例:向 GPT-3.5 灌入新知识
  • 提示工程的意义和核心思想
  • Prompt 典型构成
  • 指令调优方法论
  • 思维链和思维树
  • Prompt 攻击和防范

第二阶段(30天):高阶应用

该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。

  • 为什么要做 RAG
  • 搭建一个简单的 ChatPDF
  • 检索的基础概念
  • 什么是向量表示(Embeddings)
  • 向量数据库与向量检索
  • 基于向量检索的 RAG
  • 搭建 RAG 系统的扩展知识
  • 混合检索与 RAG-Fusion 简介
  • 向量模型本地部署

第三阶段(30天):模型训练

恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。

到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?

  • 为什么要做 RAG
  • 什么是模型
  • 什么是模型训练
  • 求解器 & 损失函数简介
  • 小实验2:手写一个简单的神经网络并训练它
  • 什么是训练/预训练/微调/轻量化微调
  • Transformer结构简介
  • 轻量化微调
  • 实验数据集的构建

第四阶段(20天):商业闭环

对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。

  • 硬件选型
  • 带你了解全球大模型
  • 使用国产大模型服务
  • 搭建 OpenAI 代理
  • 热身:基于阿里云 PAI 部署 Stable Diffusion
  • 在本地计算机运行大模型
  • 大模型的私有化部署
  • 基于 vLLM 部署大模型
  • 案例:如何优雅地在阿里云私有部署开源大模型
  • 部署一套开源 LLM 项目
  • 内容安全
  • 互联网信息服务算法备案

学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。

如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。

这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费

在这里插入图片描述

<think>好的,我需要帮用户查找关于“扣子平台智能体知识库”的信息,特别是与IT技术文档相关的资料。首先,我得回顾用户提供的引用内容,看看有没有相关的信息。 引用[2]提到AskXBOT可以构建企业知识库,应用于专家咨询、财务审核等多个场景,这可能与智能体知识库功能相关。另外,引用[3]提到百度文心智能体平台的零代码开发选项,可能涉及知识库的集成。引用[4]则讨论了Function Calling如何连接大模型与业务,可能涉及技术实现部分。 接下来,我需要整合这些信息,说明扣子平台的知识库功能,可能包括知识库构建、与智能体的集成、IT技术文档的管理等。同时,需要生成相关问题,比如如何创建、优势、应用场景等。确保回答结构清晰,符合用户的要求,使用正确的中文和LaTeX格式。最后检查引用标注是否正确,问题是否相关。</think>关于“扣子平台智能体知识库”的信息,结合行业相关技术和平台特性,以下是整理后的核心要点: ### 一、扣子平台智能体知识库的核心能力 1. **知识库构建与管理** 支持通过零代码或低代码方式导入IT技术文档、开发规范等资料,利用向量化存储和语义检索技术实现高效知识管理[^3]。例如,用户可上传Markdown格式的API文档,系统会自动解析并生成结构化索引。 2. **智能体集成能力** 基于Function Calling技术实现知识库智能体的动态交互[^4]。当用户提问$Q$时,系统通过$$ \text{Similarity}(Q, D_i) = \frac{Q \cdot D_i}{\|Q\| \|D_i\|} $$计算文档相关性,触发智能体调用知识库内容生成响应。 3. **技术文档专项优化** 针对IT文档特性提供: - 代码片段语法高亮 - 版本差异对比 - 依赖关系图谱生成 ### 二、典型应用场景 | 场景 | 实现方式 | 技术支撑 | |------|----------|----------| | API文档查询 | 自然语言转接口调用 | 语义解析+OpenAPI Schema映射[^4] | | 故障排查 | 日志模式匹配与知识库联动 | 正则表达式引擎+事件图谱 | | 技术规范审核 | 文档条款自动校验 | 规则引擎+条款向量化 | ### 三、操作示例(伪代码) ```python def handle_tech_query(question): knowledge_embedding = get_vector(question) # 获取问题向量 related_docs = vector_db.search(knowledge_embedding, top_k=3) # 语义检索 return generate_answer(question, related_docs) # 生成式回答 ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值