多模态影像+生境分析:手把手教你做生境划分

影像组学生境分析(Habitat Radiomics)是一种新兴的影像学分析方法,旨在通过影像技术识别肿瘤内部的空间异质性,将肿瘤划分为具有不同影像学特征的亚区/生境(subregions/habitats)。生境分析技术可以应用于多种疾病的多种临床场景,例如:用于预测乳腺癌患者对新辅助化疗的反应,帮助区分病理完全缓解(pCR)和非完全缓解的患者;用于预测肺腺癌的侵袭性(如微血管侵犯、病理分化程度)以及免疫治疗的反应;用于预测肝细胞癌(HCC)的微血管侵犯(MVI)和病理分化程度(如低分化肝癌);以及用于食管癌、胶质母细胞瘤等其他癌症的治疗反应和预后预测等[1~3]。

生境分析的通用流程如图1所示,其中,生境划分(亚区划分)将感兴趣区域(Region of Interest, ROI)进一步细分为多个亚区,以便更细致地分析和提取特征,因此是非常关键的一步。

img

图1 生境分析通用流程

本文将用多模态PET/CT图像为例,采用MMIS来演练乳腺肿瘤的生境划分:

\1. 图像预处理:包括图像重采样(1x1x1 mm3),配准和裁剪(可选)。这是非常重要的步骤,有助于提高图像质量、标准化多模态图像,减小计算量等(见图2)。

\2. 病灶ROI勾画:可利用“PET自适应勾画”方法,一键自动化勾画乳腺肿瘤(见图2)。

img

图2 图像预处理、病灶ROI勾画(MMIS软件)

\3. 病灶特征图计算:聚类(clustering)是最常用的生境划分方法之一,通过将肿瘤内部的体素(voxels)根据其灰度值或其他特征进行聚类。聚类的输入可以是多通道,如联合原始图像和特征图。特征图计算就是基于原始图像体素进行影像组学特征图生成,包括一阶直方图特征、二阶纹理特征等。

熵(Entropy)特征是衡量图像灰度分布均匀性的指标,反映了肿瘤内部结构的不均匀性和复杂性,常用于描述肿瘤的异质性。本文分别计算PET-Entropy和CT-Entropy特征图。由此,基于体素的灰度值(PET-SUV、CT-HU值)、熵特征值(PET-Entropy、CT-Entropy)可以构建6种“体素特征向量”组合,分别进行肿瘤亚区聚类划分。例如多模态场景下,可以联合PET和CT的熵特征,以及联合PET和CT的灰度值+熵进行聚类分区。如图3所示。

img

图3 病灶特征图计算(MMIS软件)

4.生境划分:采用K-means聚类算法,分别基于6种“体素特征向量”组合进行聚类划分,分类数自动确定(第6种多模态组合下,设置K-menas分类数=5)。6种特征组合下的聚类亚区划分结果,如图4所示。

img

img

img

图4 聚类方法生境划分结果(MMIS软件)

由图4可见,基于不同特征组合所得到的聚类分区各不相同。如何选择合适的特征组合以得到“更有生物学意义”的聚类亚区,更有效地反映影像的异质性,也是一个有意义的课题,对后续生境分析(建模预测)也是至关重要。

总结:生境分析是一种通过量化肿瘤内部异质性来预测治疗反应和疾病进展的有效方法。而在多模态影像(如PET/CT、MRI/CT)研究中,不同模态的影像可能反映病变的不同生物学特征。生境划分可以帮助整合多模态影像信息,提取更全面的特征,从而更好地反映病变的代谢和结构特征。目前,MMIS在AI数据处理工具包中提供该方面的工具,可以帮助用户快速实现该方面的研究。

如何学习大模型 AI ?

由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。

但是具体到个人,只能说是:

“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。

这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。

我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。

我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。

在这里插入图片描述

第一阶段(10天):初阶应用

该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。

  • 大模型 AI 能干什么?
  • 大模型是怎样获得「智能」的?
  • 用好 AI 的核心心法
  • 大模型应用业务架构
  • 大模型应用技术架构
  • 代码示例:向 GPT-3.5 灌入新知识
  • 提示工程的意义和核心思想
  • Prompt 典型构成
  • 指令调优方法论
  • 思维链和思维树
  • Prompt 攻击和防范

第二阶段(30天):高阶应用

该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。

  • 为什么要做 RAG
  • 搭建一个简单的 ChatPDF
  • 检索的基础概念
  • 什么是向量表示(Embeddings)
  • 向量数据库与向量检索
  • 基于向量检索的 RAG
  • 搭建 RAG 系统的扩展知识
  • 混合检索与 RAG-Fusion 简介
  • 向量模型本地部署

第三阶段(30天):模型训练

恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。

到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?

  • 为什么要做 RAG
  • 什么是模型
  • 什么是模型训练
  • 求解器 & 损失函数简介
  • 小实验2:手写一个简单的神经网络并训练它
  • 什么是训练/预训练/微调/轻量化微调
  • Transformer结构简介
  • 轻量化微调
  • 实验数据集的构建

第四阶段(20天):商业闭环

对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。

  • 硬件选型
  • 带你了解全球大模型
  • 使用国产大模型服务
  • 搭建 OpenAI 代理
  • 热身:基于阿里云 PAI 部署 Stable Diffusion
  • 在本地计算机运行大模型
  • 大模型的私有化部署
  • 基于 vLLM 部署大模型
  • 案例:如何优雅地在阿里云私有部署开源大模型
  • 部署一套开源 LLM 项目
  • 内容安全
  • 互联网信息服务算法备案

学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。

如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。

这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费

在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值