【每天3分钟学Python】使用Python进行数据透视

本文详细介绍了如何在Python中使用pandas的pivot_table函数进行数据透视,包括参数解读(如values,index,columns,aggfunc等),以及各种用法实例,如不同聚合函数的应用、自定义处理和排序。最后提供了完整的Python数据透视学习路径和资源链接。
摘要由CSDN通过智能技术生成

0****1

pivot_table语法结构

想用Python快速的解决一个问题,一定要知道这个工具都能支持到什么,而像本文中想要实现的透视功能,一定要更进一步知道pivot\_table函数的用法。知道函数中参数的用法,将更好地应用好这个功能。正所谓:知其然,知其所以然。

DataFrame.pivot_table(values=None, index=None, columns=None, aggfunc=‘mean’, fill_value=None, margins=False, dropna=True, margins_name=‘All’, observed=False)

常用的参数如:

  • value是要计算的数据列(一或多列)

  • index是需要分组的索引,可以是列或列表

  • column是需要分组的列

  • aggfunc为使用的函数,默认为均值

0****2

数据透视示例

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值