如何使用StableDiffusion对图片进行高清、优化、放大

今天这篇文章,主要想分享下如何优化图片,核心目的就是让图片变得更好看。

StableDiffusion默认生成的图片分辨率为512*512,“只可远观,不可近赏”来形容怕是再合适不过了。好不容易抽到了一张自己心仪的图,但苦于颜色暗淡,分辨率低下,有什么办法能在原画的基础上,让它的细节更丰富吗?答案是肯定且简单的。

原始图

一、高分辨率修复(Hires.fix)

使用方法:

1、勾选高分辨率修复,输入放大倍数;

2、调整数据(高分迭代步数、重绘幅度)

2.1高分迭代步数:是StableDiffusion等图像生成模型中的一个关键参数,控制生成过程中的迭代次数。更多的迭代步数通常会带来更高的图像质量和细节,但同时也会增加生成时间。一般来说,较少的迭代步数(如50到100)生成速度快但图像细节可能不足;较多的迭代步数(如150到300或更多)生成速度慢但图像细节更丰富。

(上图设置为150,出图生成时间明显变长)

2.2 重绘幅度:用于控制图像重绘的程度。它决定了在从噪声图像生成最终图像时,模型对输入提示词的依赖程度。重绘幅度的值通常在0到1之间:

0:表示没有重绘,即保持原始图像不变。

1:表示完全重绘,即生成的图像完全依赖于提示词,不参考原始图像。

当调整到0.9时,生成了一张跟原图完全不沾边的图,可见该数值对原图的影响非常大。

3、选择放大算法;

有一种说法是无脑选择 R-ESRGAN 4x+ 算法就好,如果是二次元就选择 R-ESRGAN 4x+
Anime6B,但就我个人体会来说似乎影响不大,如果有多余时间可以几种算法都尝试。

画面都显得有些灰暗,颜色并不鲜艳,可以通过勾选模型旁边地外挂VAE模型,效果提升明显。

二、图生图

1、调整重绘尺寸;效果与将图片发送到后期处理效果看不出区别。

2、脚本-SD放大。

使用方法:

1、在脚本下拉菜单中选择SD upscale;

2、在放大倍数中填入合适的数字。

3、在分块重叠像素宽度中保持默认值64即可,或者其他值X。

4、在重绘尺寸栏中,将步骤3中填入的数值加上原有的值,得出一个新值填入其中。例如原始图片尺寸为512512,扩大成原来的两倍即1024,再加上重叠像素值64,最终填入10881088。

5、可以根据需要需要对CFG Scale值和重绘幅度值进行调整。

**这么做的原因在于,该功能实现的原理是放大的原理把原图切成若干份,各自生成后再拼接成一张更大的图,而这多出来的像素就是用来重合时做缓冲使用。
**

可以看出明显的拼接痕迹

三、Tiled Diffusion + Tiled VAE

在StableDiffusionUI上的操作很容易,只需要勾选这两个框、调整放大倍数,其他保持默认也可以实现放大功能。

以下是它们的工作原理:

Tiled
Diffusion****通过将图像分割成较小的块,每个块单独进行处理,然后将处理后的块重新拼接成完整的高分辨率图像。这种方法的关键步骤包括:

  • 图像分割:将原始图像分割成多个重叠的较小块。重叠部分可以帮助在拼接时避免明显的边缘或接缝。

  • 块处理:对每个块单独进行扩散过程,即逐步去噪和细化图像。每个块可以独立处理,这样可以避免处理整个图像时的高内存占用。

  • 图像重建:将处理后的块重新拼接成完整的图像。重叠部分的像素可以通过加权平均或无缝拼接算法处理,确保块之间的过渡平滑自然。

Tiled VAE****也采用分块处理的方式,将图像分割成较小的块,每个块单独进行编码和解码。具体步骤包括:

  • 图像分割:将原始图像分割成较小的块,块的大小可以根据具体需求进行调整。

  • 块编码:使用VAE对每个块进行编码,将高维图像数据压缩成低维潜在向量。

  • 块解码:将潜在向量解码回高分辨率图像块。解码后的图像块可能会进行一些细化处理,以提高图像质量。

  • 图像重建:将解码后的图像块重新拼接成完整的图像,同样需要处理块之间的过渡部分,以确保拼接效果自然。

以下是使用Tiled Diffusion和Tiled VAE对图像进行放大和修复的具体步骤:

  • 准备图像:加载需要放大和修复的原始图像。

  • 设置块大小:选择合适的块大小,通常根据图像分辨率和可用的计算资源进行选择。

  • 图像分割:将原始图像分割成指定大小的块,确保块之间有一定的重叠区域。

  • 处理每个块:

  • 对于Tiled Diffusion,逐步去噪和细化每个块。

  • 对于Tiled VAE,先对每个块进行编码,再进行解码和细化。

  • 图像重建:将处理后的块拼接回原始图像,处理重叠区域以确保图像的平滑过渡。

这里直接将该软件分享出来给大家吧~

这份完整版的AI绘画(SD、comfyui、AI视频)整合包已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费

在这里插入图片描述

1.stable diffusion安装包

随着技术的迭代,目前 Stable Diffusion 已经能够生成非常艺术化的图片了,完全有赶超人类的架势,已经有不少工作被这类服务替代,比如制作一个 logo 图片,画一张虚拟老婆照片,画质堪比相机。

最新 Stable Diffusion 除了有win多个版本,就算说底端的显卡也能玩了哦!此外还带来了Mac版本,仅支持macOS 12.3或更高版本

在这里插入图片描述

2.stable diffusion视频合集

我们在学习的时候,往往书籍源码难以理解,阅读困难,这时候视频教程教程是就很适合了,生动形象加上案例实战,一步步带你入坑stable diffusion,科学有趣才能更方便的学习下去。

在这里插入图片描述

3.stable diffusion模型下载

stable diffusion往往一开始使用时图片等无法达到理想的生成效果,这时则需要通过使用大量训练数据,调整模型的超参数(如学习率、训练轮数、模型大小等),可以使得模型更好地适应数据集,并生成更加真实、准确、高质量的图像。

在这里插入图片描述

4.stable diffusion提示词

提示词是构建由文本到图像模型解释和理解的单词的过程。可以把它理解为你告诉 AI 模型要画什么而需要说的语言,整个SD学习过程中都离不开这本提示词手册。

在这里插入图片描述

5.SD从0到落地实战演练

在这里插入图片描述

如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名SD大神的正确特征了。

这份完整版的AI绘画(SD、comfyui、AI视频)整合包已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费

在这里插入图片描述

### 如何使用Stable Diffusion生成真实图片 #### 模型设置与参数调整 为了通过 Stable Diffusion 生成高质量的真实图片,需注意以下几个方面: 1. **模型选择** 不同的预训练模型会对最终生成的图片风格产生影响。例如,官方默认模型适合通用场景下的图像生成,而其他社区开发的模型如 `chilloutmix_Ni` 或 `anything-v4.5-pruned` 则可能更适合特定类型的图像生成[^3]。 2. **采样步数 (Sampling Step)** 采样步数直接影响生成过程的时间以及图像质量。通常情况下,较高的采样步数能够带来更加精细的结果,但也意味着更长的计算时间。具体数值可以根据所选采样算法的不同来设定,一般推荐范围为 20 至 50 步之间[^1]。 3. **配置环境并启动模型** 需要先正确安装并运行 Stable Diffusion 模型,在其 WD1.4 标签器的操作界面上可以进一步自定义各项参数设置[^2]。 以下是基于 Python 的简单脚本示例用于调用 Stable Diffusion API 来生成一张新图片: ```python from diffusers import StableDiffusionPipeline, EulerAncestralDiscreteScheduler import torch model_id = "runwayml/stable-diffusion-v1-5" scheduler = EulerAncestralDiscreteScheduler.from_pretrained(model_id, subfolder="scheduler") pipe = StableDiffusionPipeline.from_pretrained(model_id, scheduler=scheduler, revision="fp16", torch_dtype=torch.float16).to("cuda") prompt = "a photo of an astronaut riding a horse on mars" image = pipe(prompt=prompt, num_inference_steps=30).images[0] image.save("astronaut_rides_horse.png") ``` 此代码片段展示了如何加载指定版本的 Stable Diffusion 模型并通过给定提示词生成对应图像文件的过程。 --- #### 效果优化建议 对于希望获得更为真实的视觉效果而言,《Stable Diffusion教程,一键生成写实逼真美女》提供了详尽指导,涵盖了从基础概念到高级技巧的内容介绍[^4]。按照该资源中的指引逐步实践可以帮助使用者更好地理解和应用这项技术。 ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值