与多媒体相关的三原色(三基色)、增色原理与减色原理

百度了一下三原色的知识,发现很多说法并没有讲清楚,原因在于没有区别“光的叠加效果”和“物体在反射光时的减色效果”这两种不同的情况。

人眼识别颜色的原理是:某种颜色的光(颜色是由光的波长决定的,是物理属性)射入人眼的感光细胞,人脑即可对颜色进行识别。

三原色模型是指对于光源射出来的光,红、绿、蓝三种颜色,它们相互独立,可以叠加而成其他颜色,称为RGB模型。

增色原理利用的正是RGB模型,也是显示器显示颜色的原理。

那么用颜料画在纸上是什么情况呢?我们看见纸是白色的,是因为纸反射了所有颜色的光,混合而成为白光,现在用品红色的颜料涂满整张纸,我们看到的是品红色的纸,因为品红色的颜料吸收掉了绿色光而反射回来红光和蓝光,即为品红色光被人眼看见。现在再用青色颜料涂在这张品红色的纸上,我们看到的结果是蓝色,因为同理青色吸收的是红色而反射回来的是蓝色与绿色,绿色被品红吸收所以只剩蓝色,而品红也反射蓝色,那么只有蓝色被反射回来被人眼感光细胞捕捉到。若此时再加上黄色颜料,黄色是反射红色与绿色形成的,所以蓝色被吸收掉,于是结果为黑色,如下图。因为不同颜色的光被吸收掉,越叠越少,所以最后成为黑色,这就是减色模型。

好了,到此应该都讲清楚了,还有些物理知识,如光是电磁波,可见光是波长在某个范围内的电磁波,某颜色的光又是波长在其中某个范围的可见光,于是太阳光是混合了各种波长的有色光的混合体,可爱的大气层反射掉了大部分其他波长的电磁波,保护了我们地球上的千姿百态的生命形式等等知识,需要时再进一步学习吧。

变分模态分解(Variational Mode Decomposition, VMD)是一种强大的非线性、无参数信号处理技术,专门用于复杂非平稳信号的分析分解。它由Eckart Dietz和Herbert Krim于2011年提出,主要针对传统傅立叶变换在处理非平稳信号时的不足。VMD的核心思想是将复杂信号分解为一系列模态函数(即固有模态函数,IMFs),每个IMF具有独特的频率成分和局部特性。这一过程小波分析或经验模态分解(EMD)类似,但VMD通过变分优化框架显著提升了分解的稳定性和准确性。 在MATLAB环境中实现VMD,可以帮助我们更好地理解和应用这一技术。其核心算法主要包括以下步骤:首先进行初始化,设定模态数并为每个模态分配初始频率估计;接着采用交替最小二乘法,通过交替最小化残差平方和以及模态频率的离散时间傅立叶变换(DTFT)约束,更新每个模态函数和中心频率;最后通过迭代优化,在每次迭代中优化所有IMF的幅度和相位,直至满足停止条件(如达到预设迭代次数或残差平方和小于阈值)。 MATLAB中的VMD实现通常包括以下部分:数据预处理,如对原始信号进行归一化或去除直流偏置,以简化后续处理;定义VMD结构,设置模态数、迭代次数和约束参数等;VMD算法主体,包含初始化、交替最小二乘法和迭代优化过程;以及后处理,对分解结果进行评估和可视化,例如计算每个模态的频谱特性,绘制IMF的时频分布图。如果提供了一个包含VMD算法的压缩包文件,其中的“VMD”可能是MATLAB代码文件或完整的项目文件夹,可能包含主程序、函数库、示例数据和结果可视化脚本。通过运行这些代码,可以直观地看到VMD如何将复杂信号分解为独立模态,并理解每个模态的物理意义。 VMD在多个领域具有广泛的应用,包括信号处理(如声学、振动、生物医学信号分析)、图像处理(如图像去噪、特征提取)、金融时间序列分析(识
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值