ps:机智流的github项目链接SmartFlowAI/Llama3-Tutorial: Llama3-Tutorial(XTuner、LMDeploy、OpenCompass) (github.com)
一、使用vscode远程连接开发机
1. 安装 VSCode 插件
安装完 VSCode 之后,打开 VSCode 并点击左侧的扩展按钮,搜索并安装如下插件:
- Remote SSH
点击 Install ,安装 Remote SSH 的同时也会安装
- Remote - SSH: Editing Configurat
- Remote Explorer
2. 配置 VSCode 远程连接开发机
安装完插件之后,我们来到InternStudio,可以看到以下界面,然后我们点击"创建开发机",
接着我们配置开发机的名称,镜像以及GPU资源,
完成开发机创建以后,我们启动开发机,点击 SSH 连接。
复制登录命令
然后回到 VSCode 点击左侧的远程按钮,点击 SSH 的 + 号,在弹出的窗口中输入开发机的登录命令。
将 ssh 登录信息写入配置文件,我们刷新 ssh 列表就可以看到我们刚刚配置的 ssh 连接了。
点击连接,输入密码,就成功连接到开发机了。
3. 配置 VSCode 端口映射
下面会介绍两种端口映射的方法:
方法一:
我们可以使用 Ctrl + Shift + ~
快捷键打开 VSCode 终端,然后点击右边的 Ports 界面,接着点击 Foward a Port 按钮。
比如我们的端口为 6006 在这里我们就可以这样设置。
其中第一个 port 是映射在本机的端口,后面的Fowarded Address 是开发机的IP地址和端口。也就是将开发机的 6006 端口映射在了本机的 6006 这个端口,当然本机的端口是可以更改的。
但我们运行 streamlit 或者是 gradio 应用的时候,VSCode 会自动的帮我们进行端口映射,并不需要我们手动操作,所以我们介绍另一种端口映射方法,也是最常用的。
方法二:
我们打开本机的终端,我们使用 powershell,但是要确保你的本机是由 OpenSSH 服务的。
1. 配置 ssh 密钥
配置 ssh 密钥一方面是方便我们登录,这样我们不用每次连接都需要输入密码,另一方面是为了我们端口映射的安全。 首先我们需要配置 ssh 密钥, 在powershell 中输入以下命令;
ssh-keygen -t rsa
公钥默认存储在 ~/.ssh/id_rsa.pub
,可以通过系统自带的 cat 工具查看文件内容:
cat ~/.ssh/id_rsa.pub
2. 将 ssh 密钥添加到 InternStudio中
我们回到 InternStudio,找到配置 SSH Key,将我们刚刚生成的 ssh 公钥添加到 InternStudio 中,它会自动识别主机名称。
3. 进行端口映射
接着我们来到开发机控制台,点击自定义服务,复制下面的命令:
ssh -p 45980 root@ssh.intern-ai.org.cn -CNg -L 7860:127.0.0.1:7860 -o StrictHostKeyChecking=no
其中 45980 是你当前运行的开发机的端口,7860 是我们要进行映射端口,这个端口要根据运行的应用程序的端口来自行修改。
将复制的命令粘贴到本机的 powershell 中,回车
如果出现如上图所示的情况,就说明已经成功进行了端口映射,它不输出任何信息是正常的,因为端口映射服务正在运行
二、实践教程
1. 创建虚拟环境
conda create -n llama3 python=3.10
conda activate llama3
conda install pytorch==2.1.2 torchvision==0.16.2 torchaudio==2.1.2 pytorch-cuda=12.1 -c pytorch -c nvidia
2. 下载模型
新建文件夹
mkdir -p ~/model
cd ~/model
从OpenXLab中获取权重(开发机中不需要使用此步)或者软链接 InternStudio 中的模型
ln -s /root/share/new_models/meta-llama/Meta-Llama-3-8B-Instruct ~/model/Meta-Llama-3-8B-Instruct
3. Web Demo 部署
cd ~
git clone