Gen6D代码框架分析

Gen6D代码框架分析

输出格式

同机械臂DH矩阵

pose_pr = [
    [r11, r12, r13, tx],  # 旋转矩阵X轴分量 + X平移
    [r21, r22, r23, ty],  # 旋转矩阵Y轴分量 + Y平移
    [r31, r32, r33, tz],  # 旋转矩阵Z轴分量 + Z平移
    [  0,   0,   0,  1]   # 齐次坐标补全
]

具体解释

各分量详细说明:

  1. 旋转分量 (r11-r33)

    • 构成3x3正交旋转矩阵,表示物体坐标系到相机坐标系的旋转变换
    • 具体参数计算路径:
      detector位置检测
      平面平移
      selector视角选择
      平面旋转
      B+D
      相似性变换矩阵
      3D旋转矩阵合成
      refiner非线性优化
  2. 平移分量 (tx, ty, tz)

    • 单位:毫米(根据database.py中3D点云数据的单位约定)
    • 物理意义:物体中心在相机坐标系中的坐标
    • 计算公式:

    t = -R^T * camera_center
    amera_center = ref_cam * (que_f / ref_f) / scale_r2q + 光心补偿项

  3. 具体代码定位

    • utils/pose_utils.py 第132-135行:通过反解相机中心验证平移分量
    • estimator.py 第195行:使用look_at_rotation确保旋转矩阵正交性
    • predict.py 第59行:应用pose_pr进行3D边界框投影验证
  4. 示例数值解(位置:Gen6D/data/custom/具体对象/test/images_out/xxx-pose.npy):

    假设某物体位姿如下:

    • 距离相机约621mm(tz值)
    • 相对相机向右152mm,向上87mm
    • 绕X轴旋转约30度,Y轴45度,Z轴10度(通过旋转矩阵换算欧拉角)

    表示如下:

    [
        [ 0.874, 0.433,-0.193, 152.1],  # X轴:主视角方向
        [-0.482, 0.796,-0.361,  86.7],  # Y轴:物体竖直方向
        [ 0.052, 0.422, 0.905, 621.3],  # Z轴:深度方向
        [ 0.000, 0.000, 0.000,   1.0]
    ]
    

得到pose_pr的完整数据流

  1. 数据输入源:
    当前帧图像(img)来自视频分解:predict.py第45行 video2image处理
    参考视图数据库:通过estimator.build()加载(database.py提供3D点云数据)
    相机内参K:根据图像尺寸动态计算(predict.py第50-52行)

  2. 核心计算链路:

    pose_utils.py
    estimator.predict
    输入参数
    调用
    estimate_pose_from_similarity_transform
    estimate_pose_from_similarity_transform_compose
    计算相似变换矩阵M_q2r
    选择参考视图ref_idx
    selector.select_que_imgs
    位置/缩放检测
    detector.detect_que_imgs
    refiner.refine_que_imgs迭代优化
    最终pose_pr
  3. 关键变换矩阵M_q2r的构成(utils/pose_utils.py第109-113行):
    平移分量:position(检测器输出)
    缩放因子:1/scale_r2q(检测器输出的倒数)
    平面旋转:-angle_r2q(选择器输出的视角旋转)
    参考视图投影中心:ref_cen(通过project_points计算)

  4. 三维位姿合成细节:

  • 使用estimate_pose_from_similarity_transform将2D相似变换提升到3D空间:
    • 基于参考视图位姿ref_pose(来自数据库)
    • 通过object_center建立3D-2D对应关系
    • 使用look_at_rotation计算视角对齐旋转(pose_utils.py第35行)
  1. 优化阶段实现:
  • Refiner网络通过深度学习优化位姿:
    • 输入:原始图像、初始位姿、相机参数
    • 输出:精细化位姿(estimator.py第199-202行)
    • 采用迭代优化机制(默认3次迭代)
  1. 数学表达:

    # 伪代码
    pose_pr = refine( T_optimize( compose( T_translate(position), T_scale(1/scale_r2q), T_rotate(angle_r2q), project(ref_pose) ) ) 
    # 其中T_optimize由refiner网络实现非线性优化
    
### GEN6D与COLMAP集成使用指南 #### COLMAP安装流程概述 对于COLMAP的编译和安装过程,推荐采用CMake配合Ninja构建工具的方式。具体命令如下所示[^1]: ```bash cmake .. -GNinja \ -DCMAKE_CUDA_ARCHITECTURES=xx # xx需依据GPU型号查询确认 ninja sudo ninja install ``` #### 解决Anaconda环境下的LIBTIFF冲突问题 当遇到由Anaconda引起的`libtiff`库兼容性问题时,可以通过卸载Anaconda自带的相关包来解决问题。执行以下指令可以有效规避此类错误[^2]: ```bash conda uninstall libtiff ``` #### 处理APT软件源中的依赖关系失败情况 如果在通过APT获取必要开发库的过程中遇到了无法满足某些特定版本的要求,则可以根据实际情况调整所需安装组件的具体版本号。这一步骤有助于绕过因不同发行版间差异所引发的障碍[^3]。 #### Ubuntu平台下完整的COLMAP依赖项列表及其安装方法 为了确保COLMAP能够在Ubuntu操作系统上顺利运行,在此提供一份详尽的基础依赖清单以及相应的安装脚本供参考[^4]: ```bash sudo apt-get update && sudo apt-get upgrade -y sudo apt-get install \ git \ cmake \ ninja-build \ build-essential \ libboost-program-options-dev \ libboost-filesystem-dev \ libboost-graph-dev \ libboost-system-dev \ libeigen3-dev \ libflann-dev \ libfreeimage-dev \ libmetis-dev \ libgoogle-glog-dev \ libgtest-dev \ libsqlite3-dev \ libglew-dev \ qtbase5-dev \ libqt5opengl5-dev \ libcgal-dev \ libceres-dev ``` 接着克隆官方仓库并完成本地化部署: ```bash git clone https://github.com/colmap/colmap.git cd colmap mkdir build cd build cmake .. -GNinja ``` #### 关于GEN6D项目简介 GEN6D是一个专注于研究物体六自由度姿态估计的研究框架,其核心在于利用深度学习模型实现从单目图像到三维空间位置及方向预测的任务转换。该项目通常会结合诸如COLMAP这样的多视角几何重建工具来进行数据预处理工作,从而获得高质量的训练样本集用于后续算法优化迭代。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值