前言
Echarts 是百度开源的一款数据可视化 JS 工具,数据可视化类型十分丰富,但是得通过导入 js 库在 Java Web 项目上运行。
作为工作中常用 Python 的选手,不能不知道这款数据可视化插件的强大。那么,能否在 Python 中也能用到 Echarts 的功能呢?寻找中惊喜地发现了 pyecharts,只需在python中安装该模块即可使用。
安装
常用的pip安装包一键安装pyecharts
# pyecharts安装命令: python -m pip install pyecharts
Python + pyecharts具体应用
结合工作中的项目数据,我选择了 test 项目需求中 hotel_code_new 为 CNSZVS_002,CWSWS_003 对应2019年12个月指标为 RNs 的数据做可视化展示与分析。
1.Hive数据库查询sql
hive_sql内容如下
# sql中所使用的部分语法为hive sql中常规的语法,与mysql有所不同,请注意。 select rrrd1.hotel_code_new as hotel_code_new ,dda.natural_date as natural_date ,nvl(rrrd.room_nights, 0) as room_nights from ( select distinct substr(natural_dt,1,7) as natural_date from dws.dws_test_date_calendar where dt_year='2019' )dda left join (select 'CNSZVS_002' hotel_code_new UNION all select 'CWSWS_003' hotel_code_new )rrrd1 left join (select hotel_code_new ,substr(stay_date,1,7) as stay_date ,sum(number_of_room_nights) as room_nights from dwm.dwm_test_resvs_rom_daily_df where dt='2021-10-24' and hotel_code_new in(CNSZVS_002', 'CWSWS_003') and resv_status in('CHECKEDSSSIN','CHECKEDSSSOUT') and substr(stay_date,0,4) = '2019' group by hotel_code_new,substr(stay_date,1,7) )rrrd on dda.natural_date = rrrd.stay_date and rrrd1.hotel_code_new=rrrd.hotel_code_new order by rrrd.hotel_code_new;
2.Pyth