基于完全平方公式的开平方方法

一、开平方基本原理

根据完全平方公式

\because \begin{aligned} {\left(a+b \right )^{2}}&=a^{2}+2ab+b^{2}\\ &={a^{2}+{\left(2a+b \right )\times b}} \end{aligned}

设数字

​​​​​​​n{\left(n\geq 0 \right )}\\ a\geq 0\\ b\geq 0\wedge b< 10

\therefore \begin{aligned} n&={\left(a\times 10 \right )}^{2}+{\left(20a+b \right)}\times b+c\\ &={\left(a\times10+b\right)}^{2}+c \end{aligned}

比如:145=12.04^{2}+0.0384

这里可以看出c为0.0384,由此c的值越接近0,a\times10+b越接近\sqrt{n},所以当c=0\sqrt{n}=a\times10+b开平方完成。

二、长除式表示

长除式算法如下:

\begin{array}{ll} \quad{\color{red}1}~\enspace{\color{green}2}.\enspace{\color{blue}0}~\enspace{\color{magenta}4}\\ \sqrt{1|45.00|00}&{\color{red}1}^{2}\leqslant 1\Rightarrow a=0,b={\color{red}1}\\ \quad{\underline{1\quad}}&(20a+b)\times b\Rightarrow +1\times1=1\\ \quad0~45&a={\color{red}1},b={\color{green}2}\\ \qquad\underline{44\quad}&(20a+b)\times b\Rightarrow +22\times2=44\\ \qquad\enspace1~00&a={\color{red}1}{\color{green}2},b={\color{blue}0}\\ \qquad\enspace{\underline{0~00\quad}}&(20a+b)\times b\Rightarrow0\\ \qquad\enspace1~00~00&a={\color{red}1}{\color{green}2}{\color{blue}0},b={\color{magenta}4}\\ \qquad\quad\underline{~96~16\quad}&\left(20a+b \right )\times b\Rightarrow9616\\ \qquad\qquad3~84 \end{array}​​​​​​​

再比如234567={484.32}^{2}+1.1376长除式算法如下:

\begin{array}{ll} \quad\enspace{\color{red}4}~\enspace{\color{green}8}~\enspace{\color{blue}4}.\enspace{\color{cyan}3}~\enspace{\color{magenta}2}\\ \sqrt{23|45|67.00|00}&{\color{red}4}^{2}\leq 23\Rightarrow a=0,b={\color{red}4}\\ \quad\underline{16~\quad~}&\left(20\times a+b\right)\times b\Rightarrow16\\ \quad\enspace7~45&a={\color{red}4},b={\color{green}8}\\ \quad\enspace\underline{7~04~\quad~}&\left(20\times a+b\right)\times b\Rightarrow704\\ \qquad~41~67&a={\color{red}4}{\color{green}8},b={\color{blue}4}\\ \qquad~\underline{38~56~\quad~}&\left(20\times a+b\right)\times b\Rightarrow3856\\ \qquad~\enspace3~11~00&a={\color{red}4}{\color{green}8}{\color{blue}4},b={\color{cyan}3}\\ \qquad~\enspace\underline{2~90~49~\quad~}&\left(20\times a+b\right)\times b\Rightarrow29049\\ \qquad~\quad~20~51~00&a={\color{red}4}{\color{green}8}{\color{blue}4}{\color{cyan}3},b={\color{magenta}2}\\ \qquad~\quad~\underline{19~37~24~}&\left(20\times a+b\right)\times b\Rightarrow193724\\ \qquad~\quad~\enspace1~13~76&a={\color{red}4}{\color{green}8}{\color{blue}4}{\color{cyan}3}{\color{magenta}2} \end{array}

三、分解展示

换一种展示方式方便理解:

\begin{aligned} 234567&=23\times10^{4}+45\times 10^{2}+67\times 10^{0}+0\times 10^{-2}+0\times 10^{-4}+\cdots\\ \end{aligned}

\because \begin{aligned} {\left(a\times10 \right)}^{2}+{\left(20\times a+b \right )}\times b+c&=23 \end{aligned}\\ \therefore {\left\{ \begin{aligned} a&=0\\ b^2+c&=23 \end{aligned} \right.}\\

{b^{2}+c=23}\Rightarrow \left\{\begin{array}{lll} b=0&\Rightarrow&c=23\\ b=1&\Rightarrow&c=22\\ &\vdots &\\ b=4&\Rightarrow&c=7\\ b=5&\Rightarrow&c=-2\\ \end{array}\right.\Rightarrow \left \{ \begin{array}{l} b={\color{red}4}\\c=7 \end{array} \right.

\because {\begin{aligned} &{\left(a\times 10 \right )}^{2}+{\left(20\times a+b \right )}\times b+c\\ =&{\left(a\times 10+b \right )}^{2}+c \end{aligned}}\\ \therefore 23={\color{red}4}^{2}+7​​​​​​​

\begin{aligned} 234567&=23\times10^{4}+45\times 10^{2}+67\times 10^{0}+0\times 10^{-2}+0\times 10^{-4}+\cdots\\ &=\left({\color{red}4}^{2}+7 \right )\times 10^{4}+45\times 10^{2}+67\times 10^{0}+0\times 10^{-2}+0\times 10^{-4}+\cdots\\ &=\left[ \underline{ \left({\color{red}4}\times10 \right )^{2}+745 } \right ]\times10^{2}+67\times 10^{0}+0\times 10^{-2}+0\times 10^{-4}+\cdots\\ \end{aligned}

\because \begin{aligned} &\left(a\times 10 \right )^{2}+\left(20\times a+b \right )\times b +c\\ =&\left({\color{red}4}\times 10 \right )^{2}+745 \end{aligned}\\ \therefore \left\{ \begin{aligned} a&={\color{red}4}\\ \left(20\times{\color{red}4}+b \right )\times b+c&=745 \\ \left(80+b \right )\times b+c&=745 \end{aligned} \right.

\left\{ \begin{array}{lll} b=0&\Rightarrow &c=745\\ b=1&\Rightarrow &c=664\\ &\vdots \\ b=8& \Rightarrow &c=41\\ b=9& \Rightarrow &c=-56 \end{array} \right. \Rightarrow \left\{ \begin{aligned} b&={\color{green}8}\\ c&=41 \end{aligned} \right.

\because \begin{aligned} &{\left(a\times 10 \right )}^{2}+{\left(20\times a+b \right)}\times b+c\\ =&{\left(a\times10 +b \right )}^{2}+c \end{aligned}\\ \therefore \begin{aligned} \left({\color{red}4}\times 10 \right )^{2}+745&={​{\color{red}4}{\color{green}8}} ^{2}+41 \end{aligned}

因此

\begin{aligned} 234567&=\left[\left({\color{red}4}\times10 \right )^{2}+745 \right ]\times10^{2}+67\times 10^{0}+0\times 10^{-2}+0\times 10^{-4}+\cdots\\ &={\left( {​{\color{red}4}{\color{green}8}}^{2}+41\right )}\times10^{2}+67\times 10^{0}+0\times 10^{-2}+0\times 10^{-4}+\cdots\\ &={\left[{\left({​{\color{red}4}{\color{green}8}}\times10 \right)}^{2}+4167 \right ]}\times10^{0}+0\times 10^{-2}+0\times 10^{-4}+\cdots\\ \end{aligned}

再根据

\because \begin{aligned} &\left(a\times 10 \right )^{2}+\left(20\times a+b \right )\times b +c\\ =&{\left({​{\color{red}4}{\color{green}8}}\times10 \right)}^{2}+4167 \end{aligned} \\ \therefore \left\{ \begin{aligned} a&={​{\color{red}4}{\color{green}8}}\\ \left(20\times{​{\color{red}4}{\color{green}8}}+b \right )\times b+c&=4167\\ {\left(960+b \right )} \times b+c&=4167 \end{aligned} \right.

可推导

\left\{ \begin{array}{lll} b=0&\Rightarrow&c=4167\\ &\vdots \\ b=4&\Rightarrow&c=311\\ b=5&\Rightarrow&c=-658 \end{array} \right. \Rightarrow \left\{ \begin{aligned} b&={\color{blue}4}\\ c&=311 \end{aligned} \right.

\therefore {\left({​{\color{red}4}{\color{green}8}}\times10 \right)}^{2}+4167={​{\color{red}4}{\color{green}8}{\color{blue}4}} ^{2}+311

因此

\begin{aligned} 234567 &={\left[{\left({​{\color{red}4}{\color{green}8}}\times10 \right)}^{2}+4167 \right ]}\times10^{0}+0\times 10^{-2}+0\times 10^{-4}+\cdots\\ &={\left({​{\color{red}4}{\color{green}8}{\color{blue}4}}^{2}+311 \right )}\times10^{0}+0\times 10^{-2}+0\times 10^{-4}+\cdots\\ &={\left[{\left({​{\color{red}4}{\color{green}8}{\color{blue}4}}\times10 \right)}^2+31100 \right ]}\times 10^{-2}+0\times 10^{-4}+\cdots\\ \end{aligned}

重复这个流程就可以得到

\begin{aligned} 234567&=\left({​{\color{red}4}{\color{green}8}{\color{blue}4}{\color{cyan}3}{\color{magenta}2}}^{2}+11376\right)\times 10^{-4}\\ 234567&={​{\color{red}4}{\color{green}8}{\color{blue}4}.{\color{cyan}3}{\color{magenta}2}}^{2}+1.1376 \end{aligned}

如果要觉得精度不够就继续重复这个流程。

No.数值
23\times 10^{4}\begin{aligned} a_{0}&=0\\ b_{0}&=4\\ c_{0}&=7 \end{aligned}
45\times 10^{2}

\begin{aligned} a_{1}&=a_{0}\times 10+b_{0}\\ c_{1}&=c_{0}\times 10^{2}+45-{\left(20\times a_{1}+b_{1} \right )}\times b_{1} \end{aligned}

\begin{aligned} a_{1}&=4\\ b_{1}&=8\\ c_{1}&=41 \end{aligned}

67\times 10^{0}

\begin{aligned} a_{2}&=a_{1}\times 10+b_{1}\\ c_{2}&=c_{1}\times 10^{2}+67-{\left(20\times a_{2}+b_{2} \right )}\times b_{2} \end{aligned}

\begin{aligned} a_{2}&=48\\ b_{2}&=4\\ c_{2}&=311 \end{aligned}

00\times10^{-2}

\begin{aligned} a_{3}&=a_{2}\times 10+b_{2}\\ c_{3}&=c_{2}\times 10^{2}+00-{\left(20\times a_{3}+b_{3} \right )}\times b_{3} \end{aligned}

\begin{aligned} a_{3}&=484\\ b_{3}&=3\\ c_{3}&=2051 \end{aligned}

00\times 10^{-4}

\begin{aligned} a_{4}&=a_{3}\times 10+b_{3}\\ c_{4}&=c_{3}\times 10^{2}+00-{\left(20\times a_{4}+b_{4} \right )}\times b_{4} \end{aligned}

\begin{aligned} a_{4}&=4843\\ b_{4}&=2\\ c_{4}&=11376 \end{aligned}

​​​​​​​

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值