保姆级教程:手把手教你使用深度学习处理文本

大家好,今天给大家分享使用深度学习处理文本,更多技术干货,后面会陆续分享出来,感兴趣可以持续关注。

NLP技术历程

NLP技术的大致发展历程:

  • 20世纪80年代末,基于决策树和统计学习

  • 21世纪10年代,基于Logistic和统计学

  • 2014-2017年,基于RNN;尤其是双向LSTM

  • 2017-2018年,Transformer架构出现了

准备数据

  1. 文本标准化:大小写转化、去除标点等

  2. 词元化:将文本拆分成一个个单元(或者称之为词元token),比如字符或者单词、词组等

  3. 向量化,建立索引:将每个词元转成数值向量,同时建立索引

标准化

常用的标准化方法:

  1. 将所有字母转化成小写并且删除特殊符号

  2. 将特殊字符转成标准形式,比如英文中过去式、现在进行时转成标准形式,gone、went --->go

需要注意:某些符号词元在特定的场景下有具体的作用或者含义,则不能直接删除。

词元化Tokenization(文本拆分)

词元化的3种方法:

  1. 单词级词元化 word-level-tokenization:词元是以空格或者标点分隔的子字符串,比如staring拆分成star + ingcalled拆分成call + ed

  2. N元语法词元化 N-gram-tokenization:词元是连续的N个单词

  3. 字符级词元 character-level tokenizaition:每个字符都是词元;很少用,在文本生成和语音识别应用多。

两种文本处理模型:

  • 序列模型sequence model:关注词序的模型;使用单词级词元化 word-level-tokenization

  • 词袋模型bag-of-words model:将输入的单词看做一个集合,不考虑顺序;使用N元语法词元化 N-gram-tokenization

技术提升

本文由技术群粉丝分享,项目源码、数据、技术交流提升,均可加交流群获取,群友已超过2000人,添加时最好的备注方式为:来源+兴趣方向,方便找到志同道合的朋友

方式①、添加微信号:dkl88191,备注:来自CSDN +研究方向
方式②、微信搜索公众号:Python学习与数据挖掘,后台回复:加群

建立索引表

将每个词元编码为数值表示,比如将每个词元编码为一个固定的二进制向量:

vocabulary = {}  
for text in dataset:  # 遍历数据集  
    text = standardize(text)  # 文本标准化过程  
    tokens = tokenize(text)   # 生成词元  
    for token in tokens:  # 遍历tokens  
        if token not in vocabulary:  
            vocabulary[token] = len(vocabulary)  # 为词表中的每个单词分配唯一整数  

将整数进行向量化:

def one_hot_encode_token(token):  
    vector = np.zeros(len(vocabulary))   # 初始为全0向量  
    token_index = vocabulary[token]   # 某个token的索引(整数)  
    vector[token_index] = 1   # 该索引位置的值置为1  
    return vector  

需要注意3点:

  1. 通常限制文本中最常出现的20000或者30000个单词。

  2. 当在词表索引中查找一个新的词元时,可能不存在。使用OOV使用,即Out of Vocabulary。OOV的索引通常是1:token_index = vocabulary.get(token,1)

  3. 掩码词元 maskt token:索引为0,表示的含义是:“别理我,我不是一个单词”。作用:进行序列的填充,保证一批序列数据中每个序列具有相同的长度。

[[5,7,8,10,1],  
 [4,1,3]]  
  
通过掩码词元变成:   
    [[5,7,8,10,1],  
     [4,1,3,0,0]]  

使用TextVectorization层

手写TextVectorization层

In [1]:

# 实现Vectorizer层  
  
import string  
  
class Vectorizer:  
    def standardize(self, text):  
        text = text.lower()  # 全部变成小写  
        result = "".join(char for char in text if char not in string.punctuation)  
        return result  
      
    def tokenize(self,text):  
        text = self.standardize(text)  # 调用标准化函数  
        return text.split()  
      
    def make_vocabulary(self, dataset):  
        self.vocabulary = {"":0, "[UNK]":1}  # 针对掩码索引和OOV索引  
        for text in dataset:  
            text = self.standardize(text)  # 标准化  
            tokens = self.tokenize(text)  # 词元化  
            for token in tokens:  
                if token not in self.vocabulary:  
                    self.vocabulary[token] = len(self.vocabulary)  
        self.inverse_vocabulary = dict((v,k) for k, v in self.vocabulary.items())   # 翻转vocabulary中的键值对  
          
    def encode(self, text):  # 编码过程  
        text = self.standardize(text)  
        tokens = self.tokenize(text)  
        return [self.vocabulary.get(token,1) for token in tokens]  
      
    def decode(self, int_sequence):  # 解码过程  
        result = " ".join(self.inverse_vocabulary.get(i,"[UNK]") for i in int_sequence)  
        return result  
      
      
vectorizer = Vectorizer()  
dataset = ["I write, erase, rewrite","Erase again and again","A poppy blooms"]  
  
vectorizer.make_vocabulary(dataset)  

In [2]:

test_sequence = "I write, rewrite, and still rewrite again"  
  
encoded_sentence = vectorizer.encode(test_sequence)  
encoded_sentence  

Out[2]:

[2, 3, 5, 7, 1, 5, 6]  

In [3]:

decoded_sentence = vectorizer.decode(encoded_sentence)  
decoded_sentence  # still在原文本没有出现,使用OOV索引,用[UNK]表示  

Out[3]:

'i write rewrite and [UNK] rewrite again'  

Keras自带TextVectorization层

TextVectorization层默认的操作是:

  1. 转成小写

  2. 删除标点符号

  3. 词元化方法是使用空格进行拆分

In [4]:

from tensorflow.keras.layers import TextVectorization  
  
text_vectorization = TextVectorization(  
    output_mode="int"   # 返回值是编码为整数索引的单词序列  
)  

In [5]:

# 可以自定方法来标准化和词元化。等同下面的代码  
  
import re  # 正则模块  
import string  
import tensorflow as tf  
  
def custom_standardization_fn(string_tensor):  
    lowercase_string = tf.strings.lower(string_tensor)  # 转小写  
    return tf.strings.regex_replace(lowercase_string, f'[{re.escape(string.punctuation)}]', '')  # 将标点符号替换为空字符串  
  
def custom_split_fn(string_tensor):  
    return tf.strings.split(string_tensor)  # 基于空格的切割字符串  
  
text_vectorization = TextVectorization(output_mode="int",  
                                      standardize=custom_standardization_fn,  # 标准化  
                                      split=custom_split_fn   # 词元化  
                                      )  

对文本语料库的词表建立索引,使用该层的adapt()方法:参数是可以生成字符串的Dataset对象或者由python字符串组成的列表。

In [6]:

dataset = ["I write, erase, rewrite",  
           "Erase again and again",  
           "A poppy blooms"  
          ]  
  
text_vectorization.adapt(dataset)  

获取词表get_vocabulary:词表中的元素按照频率排列

In [7]:

# 显示词表  
text_vectorization.get_vocabulary()  

Out[7]:

['',  
 '[UNK]',  
 'erase',  
 'again',  
 'write',  
 'rewrite',  
 'poppy',  
 'i',  
 'blooms',  
 'and',  
 'a']  

In [8]:

vocabulary = text_vectorization.get_vocabulary()  
  
# 测试句子  
test_sentence = "I write, rewrite, and still rewrite again"  
  
# 编码  
encoded_sentence = text_vectorization(test_sentence)  
encoded_sentence   # 返回的是单词对应的索引-数值  

Out[8]:

<tf.Tensor: shape=(7,), dtype=int64, numpy=array([7, 4, 5, 9, 1, 5, 3])>  

In [9]:

inverse_vocab = dict(enumerate(vocabulary))  
print("inverse_vocab", inverse_vocab)  # 单词对应的索引  键-索引,值-单词  
# 解码  
decoded_sentence = " ".join(inverse_vocab[int(i)] for i in encoded_sentence)  
  
decoded_sentence  
inverse_vocab {0: '', 1: '[UNK]', 2: 'erase', 3: 'again', 4: 'write', 5: 'rewrite', 6: 'poppy', 7: 'i', 8: 'blooms', 9: 'and', 10: 'a'}  

Out[9]:

'i write rewrite and [UNK] rewrite again'  

TextVectorization层的使用

TextVectorization层主要是字典的查询操作,不能在GPU或者TPU上运行,只能在CPU上运行

方法1:在tf.data管道中使用TextVectorization层

int_sequence_dataset = string_dataset.map(   # string_dataset:生成字符串张量的数据集  
    text_vectorization,   # 文本标准化的数据  
    num_parallel_calls=4  # 在多个CPU上并行调用map  
)  

方法2: 将TextVectorization层作为模型的一部分来使用

text_input = keras.Input(shape=(), dtype="string")   # 创建输入的符号张量,数据类型为字符串  
vectorized_text = text_vectorization(text_input)  # 向量化  
embedded_input = keras.layers.Embedding(...)(vectorized_text)   # 添加新的层:就像普通的函数式API  
output = ...  
model = keras.Model(text_input, output)  

表示单词组的两种方法:集合和序列

  1. 词袋模型bag-of-words model:不考虑文本顺序,将文本看做是一组无序的单词

  2. 序列模型sequence model:比如RNN和Transformer都是考虑了词序的

实战IMDB数据集

准备数据

从斯坦福大学的Andrew Maas的页面下载数据并解压,train/pos目录下有12500个文件,每个文件包含一个正面情绪的影评文本,用作训练集。负面情绪的数据在neg目录下

准备验证集

In [11]:

import os, pathlib, shutil, random  
  
# 创建3个文件目录  
base_dir = pathlib.Path("aclImdb")  
val_dir = base_dir / "val"  
train_dir = base_dir / "train"  

In [12]:

base_dir  

Out[12]:

PosixPath('aclImdb')  

In [13]:

val_dir  

Out[13]:

PosixPath('aclImdb/val')  

In [14]:

train_dir  

Out[14]:

PosixPath('aclImdb/train')  

In [15]:

for category in ("neg", "pos"):  
    os.makedirs(val_dir / category)  # 创建两个验证集目录  
    files = os.listdir(train_dir / category)  # 训练集目录下的全部文件(正负)  
      
    random.Random(1337).shuffle(files)  # 随机打乱数据  
    num_val_samples = int(0.2*len(files))  # 20%  
    val_files = files[-num_val_samples:]  # 倒序切片  [-n:]  
      
    for fname in val_files:  # 对文件遍历:将train_dir中的文件一定到val_dir中  
        shutil.move(train_dir / category / fname, val_dir / category / fname)  

生成DataSet对象

使用text_dataset_from_directory来生成数据集

In [16]:

from tensorflow import keras  
batch_size = 32  
  
train_ds = keras.utils.text_dataset_from_directory("aclImdb/train", batch_size=batch_size)  
val_ds = keras.utils.text_dataset_from_directory("aclImdb/val", batch_size=batch_size)  
test_ds = keras.utils.text_dataset_from_directory("aclImdb/test", batch_size=batch_size)  
Found 12800 files belonging to 2 classes.  
Found 3200 files belonging to 2 classes.  
Found 25000 files belonging to 2 classes.  

运行代码输出的内容是:找到2个类别的20000个文件

数据集的输入是TensorFlow tf.string张量,生成的目标是int32格式的张量,取值是0或者1.

In [17]:

# 显示第一个批量的数据集形状和类型  
  
for inputs, targets in train_ds:  
    print("inputs_shape", inputs.shape)  
    print("inputs_dtype", inputs.dtype)  
    print("targets.shape", targets.shape)  
    print("targets.dtype", targets.dtype)  
    print("inputs[0]", inputs[0])  
    print("targets[0]", targets[0])  

将单词作为集合处理:词袋方法

对文本编码的简单方法:舍弃顺序,将文本看做是一组(一袋)词元。既可以看做是单个词元,也可以看做是连续的一组词元(N元语法)

单个词元的二进制编码

将整个文本看做是单一向量,其中每个元素表示某个单词是否存在。

基于二进制的编码将文本编码为一个向量,向量维数等于词表中的单词个数。

向量中的所有元素几乎为0,存在的元素才是1。

基于一元语法:用TextVectorization层预处理数据

In [18]:

text_vectorization = TextVectorization(  
    max_tokens=20000,  
    output_mode="multi_hot",  # 重点:二进制编码  
)  

In [19]:

# 准备数据集,仅包含文本输入,不包含标签  
text_only_train_ds = train_ds.map(lambda x,y: x)  
text_vectorization.adapt(text_only_train_ds)  

In [20]:

binary_lgram_train_ds = train_ds.map(lambda x,y: (text_vectorization(x),y),num_parallel_calls=4)  
binary_lgram_val_ds = val_ds.map(lambda x,y: (text_vectorization(x),y),num_parallel_calls=4)  
binary_lgram_test_ds = test_ds.map(lambda x,y: (text_vectorization(x),y),num_parallel_calls=4)  

In [21]:

# 查看一元语法二进制编码后的数据集的输出  
  
for inputs, targets in binary_lgram_train_ds:  
    print("inputs_shape", inputs.shape)  
    print("inputs_dtype", inputs.dtype)  
    print("targets.shape", targets.shape)  
    print("targets.dtype", targets.dtype)  
    print("inputs[0]", inputs[0])  
    print("targets[0]", targets[0])  
构建网络模型(复用)

本章节中复用此模型

In [22]:

from tensorflow import keras  
from tensorflow.keras import layers  
  
def get_model(max_token=20000, hidden_dim=16):  
    inputs = keras.Input(shape=(max_token,))   # 输入层  
    x = layers.Dense(hidden_dim, activation="relu")(inputs)   # 隐藏层  
    x = layers.Dropout(0.5)(x)  #  dropout层,防止过拟合  
    outputs = layers.Dense(1, activation="sigmoid")(x)  # 输出层  
    model = keras.Model(inputs, outputs)   # Model实例化  
    model.compile(optimizer="rmsprop",loss="binary_crossentropy",metrics=["accuracy"])   # 编译模型  
      
    return model  
模型训练和测试

In [23]:

model = get_model()  
model.summary()  
Model: "model"  
_________________________________________________________________  
 Layer (type)                Output Shape              Param #     
=================================================================  
 input_1 (InputLayer)        [(None, 20000)]           0           
                                                                   
 dense (Dense)               (None, 16)                320016      
                                                                   
 dropout (Dropout)           (None, 16)                0           
                                                                   
 dense_1 (Dense)             (None, 1)                 17          
                                                                   
=================================================================  
Total params: 320,033  
Trainable params: 320,033  
Non-trainable params: 0  
_________________________________________________________________  

In [24]:

callbacks = [keras.callbacks.ModelCheckpoint("binary_lgram_keras",  
                                             save_best_only=True)]  
  
model.fit(binary_lgram_train_ds.cache(),  
          validation_data=binary_lgram_val_ds.cache(),  
          epochs=10,  
          callbacks=callbacks  
         )  
  
model = keras.models.load_model("binary_lgram_keras")  
  
print(f'Test acc', model.evaluate(binary_lgram_test_ds))  
Epoch 1/10  
392/400 [============================>.] - ETA: 0s - loss: 0.4510 - accuracy: 0.7995INFO:tensorflow:Assets written to: binary_lgram_keras/assets  
400/400 [==============================] - 7s 14ms/step - loss: 0.4488 - accuracy: 0.8008 - val_loss: 0.3165 - val_accuracy: 0.8806  
Epoch 2/10  
398/400 [============================>.] - ETA: 0s - loss: 0.2740 - accuracy: 0.8956INFO:tensorflow:Assets written to: binary_lgram_keras/assets  
400/400 [==============================] - 4s 10ms/step - loss: 0.2743 - accuracy: 0.8952 - val_loss: 0.2996 - val_accuracy: 0.8834  
Epoch 3/10  
400/400 [==============================] - 3s 7ms/step - loss: 0.2313 - accuracy: 0.9175 - val_loss: 0.3097 - val_accuracy: 0.8869  
Epoch 4/10  
400/400 [==============================] - 3s 7ms/step - loss: 0.2019 - accuracy: 0.9303 - val_loss: 0.3240 - val_accuracy: 0.8875  
Epoch 5/10  
400/400 [==============================] - 3s 7ms/step - loss: 0.1885 - accuracy: 0.9398 - val_loss: 0.3431 - val_accuracy: 0.8831  
Epoch 6/10  
400/400 [==============================] - 3s 7ms/step - loss: 0.1763 - accuracy: 0.9412 - val_loss: 0.3683 - val_accuracy: 0.8838  
Epoch 7/10  
400/400 [==============================] - 3s 7ms/step - loss: 0.1740 - accuracy: 0.9477 - val_loss: 0.3835 - val_accuracy: 0.8841  
Epoch 8/10  
400/400 [==============================] - 3s 7ms/step - loss: 0.1541 - accuracy: 0.9491 - val_loss: 0.4029 - val_accuracy: 0.8853  
Epoch 9/10  
400/400 [==============================] - 3s 7ms/step - loss: 0.1664 - accuracy: 0.9514 - val_loss: 0.4074 - val_accuracy: 0.8819  
Epoch 10/10  
400/400 [==============================] - 3s 7ms/step - loss: 0.1521 - accuracy: 0.9532 - val_loss: 0.4303 - val_accuracy: 0.8831  
782/782 [==============================] - 6s 7ms/step - loss: 0.2969 - accuracy: 0.8810  
Test acc [0.2969053089618683, 0.8809599876403809]  
基于二元语法的二进制编码
返回二元语法

TextVectorization层能够返回任意N元语法,通过参数设置ngrams=N

In [25]:

# 返回二元语法  
  
text_vectorization = TextVectorization(ngrams=2,  
                                      max_tokens=20000,  
                                      output_mode="multi_hot",  
                                      )  
模型训练和测试

In [26]:

text_vectorization.adapt(text_only_train_ds)    
  
binary_2gram_train_ds = train_ds.map(  
    lambda x,y: (text_vectorization(x),y),  
    num_parallel_calls=4)  
binary_2gram_val_ds = val_ds.map(  
    lambda x,y: (text_vectorization(x),y),  
    num_parallel_calls=4)  
binary_2gram_test_ds = test_ds.map(  
    lambda x,y: (text_vectorization(x),y),  
    num_parallel_calls=4)  
  
# 模型实例化  
model = get_model()  
model.summary()  
  
  
callbacks = [keras.callbacks.ModelCheckpoint("binary_2gram_keras",  
                                             save_best_only=True)]  
  
model.fit(binary_2gram_train_ds.cache(),  
          validation_data=binary_2gram_val_ds.cache(),  
          epochs=10,  
          callbacks=callbacks  
         )  
  
model = keras.models.load_model("binary_2gram_keras")  
  
print(f'Test acc', model.evaluate(binary_2gram_test_ds))  
Model: "model_1"  
_________________________________________________________________  
 Layer (type)                Output Shape              Param #     
=================================================================  
 input_2 (InputLayer)        [(None, 20000)]           0           
                                                                   
 dense_2 (Dense)             (None, 16)                320016      
                                                                   
 dropout_1 (Dropout)         (None, 16)                0           
                                                                   
 dense_3 (Dense)             (None, 1)                 17          
                                                                   
=================================================================  
Total params: 320,033  
Trainable params: 320,033  
Non-trainable params: 0  
_________________________________________________________________  
Epoch 1/10  
398/400 [============================>.] - ETA: 0s - loss: 0.4216 - accuracy: 0.8215INFO:tensorflow:Assets written to: binary_2gram_keras/assets  
400/400 [==============================] - 7s 15ms/step - loss: 0.4211 - accuracy: 0.8220 - val_loss: 0.2985 - val_accuracy: 0.8891  
Epoch 2/10  
400/400 [==============================] - 3s 7ms/step - loss: 0.2421 - accuracy: 0.9115 - val_loss: 0.2988 - val_accuracy: 0.8888  
Epoch 3/10  
400/400 [==============================] - 3s 8ms/step - loss: 0.1938 - accuracy: 0.9348 - val_loss: 0.3240 - val_accuracy: 0.8913  
Epoch 4/10  
400/400 [==============================] - 3s 7ms/step - loss: 0.1696 - accuracy: 0.9445 - val_loss: 0.3459 - val_accuracy: 0.8881  
Epoch 5/10  
400/400 [==============================] - 2s 6ms/step - loss: 0.1477 - accuracy: 0.9542 - val_loss: 0.3751 - val_accuracy: 0.8894  
Epoch 6/10  
400/400 [==============================] - 3s 7ms/step - loss: 0.1381 - accuracy: 0.9601 - val_loss: 0.4036 - val_accuracy: 0.8872  
Epoch 7/10  
400/400 [==============================] - 2s 6ms/step - loss: 0.1362 - accuracy: 0.9623 - val_loss: 0.4186 - val_accuracy: 0.8891  
Epoch 8/10  
400/400 [==============================] - 2s 6ms/step - loss: 0.1336 - accuracy: 0.9640 - val_loss: 0.4406 - val_accuracy: 0.8863  
Epoch 9/10  
400/400 [==============================] - 3s 7ms/step - loss: 0.1357 - accuracy: 0.9641 - val_loss: 0.4575 - val_accuracy: 0.8881  
Epoch 10/10  
400/400 [==============================] - 3s 7ms/step - loss: 0.1286 - accuracy: 0.9663 - val_loss: 0.4638 - val_accuracy: 0.8884  
782/782 [==============================] - 5s 6ms/step - loss: 0.2848 - accuracy: 0.8918  
Test acc [0.28478434681892395, 0.8918399810791016]  

我们发现,使用二元语法后精度达到了89.2%,而是用一元语法精度仅为87.8%;效果还是蛮好的

二元语法的TF-IDF的编码

基本思想

TextVectorizatio层还可以是基于计算每个单词或者每个N元语法的出现次数,统计文本的直方图

# 二元语法的出现次数  
  
text_vectorization = TextVectorization(ngrams=2,  
                                       max_tokens=20000,  
                                       output_mode="count")  

上述处理的缺陷:有些单词,比如the``a等肯定高频出现,但是对于建模无用,怎么处理?

解决方法:规范化,将单词计数减去均值除以方差。使用TF-IDF最好:词频-逆文档频次

text_vectorization = TextVectorization(ngrams=2,  
                                       max_token=20000,  
                                       output_mode="tf-idf")  

TF-IDF的思想:某个单词在一个文档(当前文档)中出现的次数很重要;在全部文档中出现的频次也很重要。如果一个词语几乎在每个文档都出现的话,比如the、a等,那么它就不重要了。TF-IDF就是综合考虑了这两种思想。

TF:词频数,一篇文章中的词语出现的总次数,计算公式为:

某个词语在文章中出现的总次数文章的总词数

IDF:逆文档频率,需要一个语料库来支撑模型的环境,计算公式为:

预料库的文档总数包含该词语的文档数

def tfidf(term, document,dataset):  
    term_freq = document.count(term)  
    doc_freq = math.log(sum(doc.count(term) for doc in dataset) + 1)  
    return term_freq / doc_freq  
基于TF-IDF的模型训练

In [27]:

text_vectorization = TextVectorization(  
    ngrams=2,  
    max_tokens=20000,  
    output_mode="tf-idf"    # 选择输出模式  
)  

In [28]:

text_vectorization.adapt(text_only_train_ds)    
  
tfidf_2gram_train_ds = train_ds.map(  
    lambda x,y: (text_vectorization(x),y),  
    num_parallel_calls=4)  
tfidf_2gram_val_ds = val_ds.map(  
    lambda x,y: (text_vectorization(x),y),  
    num_parallel_calls=4)  
tfidf_2gram_test_ds = test_ds.map(  
    lambda x,y: (text_vectorization(x),y),  
    num_parallel_calls=4)  
  
# 模型实例化  
model = get_model()  
model.summary()  
  
  
callbacks = [keras.callbacks.ModelCheckpoint("tfidf_2gram_keras",  
                                             save_best_only=True)]  
  
model.fit(tfidf_2gram_train_ds.cache(),  
          validation_data=tfidf_2gram_val_ds.cache(),  
          epochs=10,  
          callbacks=callbacks  
         )  
  
model = keras.models.load_model("tfidf_2gram_keras")  
  
print(f'Test acc', model.evaluate(tfidf_2gram_test_ds))  
Model: "model_2"  
_________________________________________________________________  
 Layer (type)                Output Shape              Param #     
=================================================================  
 input_3 (InputLayer)        [(None, 20000)]           0           
                                                                   
 dense_4 (Dense)             (None, 16)                320016      
                                                                   
 dropout_2 (Dropout)         (None, 16)                0           
                                                                   
 dense_5 (Dense)             (None, 1)                 17          
                                                                   
=================================================================  
Total params: 320,033  
Trainable params: 320,033  
Non-trainable params: 0  
_________________________________________________________________  
Epoch 1/10  
396/400 [============================>.] - ETA: 0s - loss: 0.5398 - accuracy: 0.7569INFO:tensorflow:Assets written to: tfidf_2gram_keras/assets  
400/400 [==============================] - 10s 21ms/step - loss: 0.5393 - accuracy: 0.7577 - val_loss: 0.3512 - val_accuracy: 0.8644  
Epoch 2/10  
398/400 [============================>.] - ETA: 0s - loss: 0.3277 - accuracy: 0.8609INFO:tensorflow:Assets written to: tfidf_2gram_keras/assets  
400/400 [==============================] - 4s 9ms/step - loss: 0.3288 - accuracy: 0.8603 - val_loss: 0.3308 - val_accuracy: 0.8775  
Epoch 3/10  
400/400 [==============================] - 3s 7ms/step - loss: 0.2839 - accuracy: 0.8780 - val_loss: 0.3535 - val_accuracy: 0.8856  
Epoch 4/10  
400/400 [==============================] - 3s 7ms/step - loss: 0.2462 - accuracy: 0.8916 - val_loss: 0.3800 - val_accuracy: 0.8772  
Epoch 5/10  
400/400 [==============================] - 3s 6ms/step - loss: 0.2380 - accuracy: 0.8948 - val_loss: 0.4089 - val_accuracy: 0.8712  
Epoch 6/10  
400/400 [==============================] - 3s 7ms/step - loss: 0.2129 - accuracy: 0.9093 - val_loss: 0.4162 - val_accuracy: 0.8863  
Epoch 7/10  
400/400 [==============================] - 3s 7ms/step - loss: 0.2116 - accuracy: 0.9071 - val_loss: 0.4390 - val_accuracy: 0.8744  
Epoch 8/10  
400/400 [==============================] - 3s 7ms/step - loss: 0.1900 - accuracy: 0.9180 - val_loss: 0.4753 - val_accuracy: 0.8794  
Epoch 9/10  
400/400 [==============================] - 3s 7ms/step - loss: 0.1894 - accuracy: 0.9192 - val_loss: 0.4709 - val_accuracy: 0.8766  
Epoch 10/10  
400/400 [==============================] - 3s 8ms/step - loss: 0.1878 - accuracy: 0.9184 - val_loss: 0.5033 - val_accuracy: 0.8706  
782/782 [==============================] - 6s 6ms/step - loss: 0.3094 - accuracy: 0.8807  
Test acc [0.30939018726348877, 0.8807200193405151]  

将单词作为序列处理:序列模型方法

深度学习的历史就是逐渐摆脱手动特征工程,让模型仅仅通过数据自己就能学习特征。

序列模型就是非手动寻找基于顺序的特征,而是让模型直接观察原始单词序列的顺序并自己找出这样的特征。

要想实现序列模型:

  • 将输入样本表示为整数索引序列,每个整数代表一个单词

  • 将每个整数映射为一个向量,得到向量序列

  • 将向量序列输入层进行堆叠;这些层可以将相邻向量的特征交叉关联

准备序列模型数据

In [32]:

# 准备序列模型数据  
from tensorflow.keras import layers  
  
max_length = 600  # 在600个单词处阶段  
max_tokens = 20000  #   
text_vectorization = layers.TextVectorization(  # 向量化  
    max_tokens=max_tokens,  
    output_mode="int",  
    output_sequence_length=max_length,  
)  
  
text_vectorization.adapt(text_only_train_ds)  
  
int_train_ds = train_ds.map(  
    lambda x,y: (text_vectorization(x),y),  
    num_parallel_calls=4)  
int_val_ds = val_ds.map(  
    lambda x,y: (text_vectorization(x),y),  
    num_parallel_calls=4)  
int_test_ds = test_ds.map(  
    lambda x,y: (text_vectorization(x),y),  
    num_parallel_calls=4)  
构建基于One-hot编码的序列模型

In [33]:

import tensorflow as tf  
inputs = keras.Input(shape=(None,), dtype="int64")  
  
embedded = tf.one_hot(inputs, depth=max_tokens)  # 编码为20000维的二进制向量  
x = layers.Bidirectional(layers.LSTM(32))(embedded)   # 添加一个双向的LSTM  
x = layers.Dropout(0.5)(x)  
outputs = layers.Dense(1, activation="sigmoid")(x)  # 最后一层是分类器  
  
model = keras.Model(inputs, outputs)  
model.compile(optimizer="rmsprop",  
              loss="binary_crossentropy",  
              metrics=["accuracy"]  
             )  
  
model.summary()  
Model: "model_4"  
_________________________________________________________________  
 Layer (type)                Output Shape              Param #     
=================================================================  
 input_5 (InputLayer)        [(None, None)]            0           
                                                                   
 tf.one_hot_1 (TFOpLambda)   (None, None, 20000)       0           
                                                                   
 bidirectional_1 (Bidirectio  (None, 64)               5128448     
 nal)                                                              
                                                                   
 dropout_4 (Dropout)         (None, 64)                0           
                                                                   
 dense_7 (Dense)             (None, 1)                 65          
                                                                   
=================================================================  
Total params: 5,128,513  
Trainable params: 5,128,513  
Non-trainable params: 0  
_________________________________________________________________  

训练序列模型

In [*]:

callbacks = [   # 回调函数  
    keras.callbacks.ModelCheckpoint("ont_hot_bidir_lstm.keras",  
                                    save_best_only=True  
                                   )]  
  
model.fit(int_train_ds,  # 模型训练  
          validation_data=int_val_ds,  
          epochs=10,  
          callbacks=callbacks  
         )  
  
model = keras.models.load_model("one_hot_bidir_lstm.keras") #   直接调用模型  

这个模型在这里运行的很慢,输入很大:每个样本被编码成(600,20000)的矩阵(电脑运行部分截图)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值