基于 Ollama 私有化部署 DeepSeek 并集成智能体平台 Dify 知识库

节前,我们邀请了一些互联网大厂朋友、今年参加社招和校招面试的同学。

针对新人如何快速入门算法岗、如何准备面试攻略、面试常考点、大模型项目落地经验分享等热门话题进行了深入的讨论。

总结链接:《大模型面试宝典》(2025版) 正式发布!

喜欢本文记得收藏、关注、点赞

技术交流

前沿技术资讯、算法交流、求职内推、算法竞赛、面试交流(校招、社招、实习)等、与 10000+来自港科大、北大、清华、中科院、CMU、腾讯、百度等名校名企开发者互动交流~

我们建了大模型算法岗技术与面试交流群, 想要进交流群、需要源码&资料、提升技术的同学,可以直接加微信号:mlc2040。加的时候备注一下:研究方向 +学校/公司+CSDN,即可。然后就可以拉你进群了。

方式①、微信搜索公众号:机器学习社区,后台回复:技术交流
方式②、添加微信号:mlc2040,备注:技术交流


在 AI 时代,企业越来越依赖大模型来提高生产力,而 DeepSeek 作为国产大模型的佼佼者,在私有化部署方面提供了强大的能力。同时,Dify 作为一个低代码 LLM 应用构建平台,可以让企业轻松搭建自己的 AI 助手,并实现知识库共享。那么,如何在企业内部搭建一套基于 DeepSeek 和 Dify 的知识共享系统呢?

今天,我们就来聊聊:如何在企业内部私有化部署 DeepSeek,并结合 Dify 构建企业级知识库共享方案。

为什么要私有化部署 DeepSeek?

如果你在企业里推动 AI 落地,老板可能会问你:“为什么我们不能直接用大模型在线API?”

答案很简单:

数据安全:企业的核心文档、客户资料、专利数据等都需要严格保密,公有云大模型的 API 调用存在数据泄露风险。

成本可控:大规模使用大模型API,长期来看成本会非常可观,而本地部署 DeepSeek 只需要一次性投入服务器成本。

个性化训练:私有化部署允许企业定制模型,适配特定业务场景。

所以,企业想真正利用 AI 赋能业务,私有化部署是王道!

DeepSeek 私有化部署指南(基于 Ollama)

01 DeepSeek部署硬件要求

以下为DeepSeek-r1不同参数模型部署所建议硬件要求(仅供参考):

图片

02 安装 Ollama 并部署 DeepSeek

在命令符界面输入如下命令下载Ollama镜像:

docker pull ollama/ollama

使用下面的命令部署运行Ollama(Portainer 或 docker compose):

version: '3.9'
services:
 ollama:
    image: ollama/ollama
    container_name: my-ollama #容器名字可自己定义
    volumes:
      - /ollama/models:/root/.ollama  # 模型存放路径自己定义

等Ollama容器运行起来后,在系统命令行中执行如下语句安装DeepSeek-r1,本次我们作为测试,安装模型参数为1.5b。

# 进入Ollama容器
docker exec -it my-ollama /bin/bash
# 执行下载模型命令
ollama run deepseek-r1

等待模型下载完成后,即可执行exit命令退出容器。

集成 Dify 进行知识库共享

01 安装Dify

Dify 是一个开源的 AI 应用构建平台,支持私有化部署,企业可以用它轻松管理知识库。

Dify下载地址:

https://github.com/langgenius/dify

下载完成后,上传到系统指定目录,解压后并执行如下命令进行安装:

cd dify
cd docker
docker compose up -d

02 连接 DeepSeek API

设置完Dify的管理员后,我们进入Dify页面:

在 Dify 后台,左上角用户图标下拉菜单下,我们选择设置-模型提供商,选择Ollama模型提供商,并输入接口信息,点击保存,如下图:

图片

03 构建企业知识库

在 Dify 的“知识库”模块,我们可以上传企业的文档(PDF、Word、TXT等格式文档),Dify 会自动索引这些文件,并构建知识库。

使用 RAG(检索增强生成)技术,Dify 可以在 AI 生成回答时结合企业内部知识,让 AI 变成“内部专家”!

我们上传一个测试数据,如下图:

图片

智能手表使用说明书文档内容如下:

一、产品概述
欢迎使用本智能手表。本手表集健康监测、运动记录、智能提醒等多种功能于一体,为您的日常生活提供便捷的智能体验。
二、产品清单
智能手表 ×1
充电线 ×1
使用说明书 ×1
保修卡 ×1
三、产品功能
基本功能:时间显示、闹钟、计时器、天气预报。
健康管理:心率监测、血氧检测、睡眠监测、压力检测。
运动模式:支持多种运动模式,如跑步、骑行、游泳等。
智能提醒:消息通知、来电提醒、久坐提醒。
其他功能:蓝牙音乐控制、远程拍照、查找手机。
四、产品使用
开机与关机
长按侧边按钮3秒开机。
长按侧边按钮5秒可关机。
充电方法
使用附赠的充电线连接手表与电源。
充电时请确保接口干燥。
蓝牙连接
在手机端下载“智能手表APP”(可在应用商店搜索)。
打开APP,根据指引进行蓝牙配对。
操作方式
触摸屏滑动可切换界面。
按钮短按返回上一层,长按进入快捷菜单。
五、注意事项
本手表防水等级为IP68,可用于日常防水,但请勿长时间浸泡。
佩戴时请保持表带清洁,避免过紧导致皮肤不适。
长时间不使用时,请充满电后存放,以延长电池寿命。
请勿自行拆卸或维修本手表,如遇故障请联系售后服务。
六、售后服务
本产品享受一年保修服务,非人为损坏情况下,提供免费维修或更换服务。若有任何问题,请联系官方客服。
感谢您选择本智能手表,祝您使用愉快!

点击下一步对数据进行处理,如下图:

图片

处理后数据如下:

图片

04 对知识库进行测试

在Dify中我们创建一个Chatbot,如下图,点击创建:

图片

如下图:我们在上下文中加入我们上传的文档,选择我们刚部署的模型,在右侧进行提问测试,我们发现模型回答的内容是基于我们上传的文档进行回答的。

图片

点击右上角的发布,我们可以对ChatBot进行发布及API调用。

图片

企业应用场景

私有化部署的 DeepSeek + Dify 在企业内部可以做很多事情,比如:

1. 智能客服训练 AI 回答公司政策、产品 FAQ,减少人工客服负担。

2. 企业内部搜索让员工直接问 AI,而不是翻遍公司的 Wiki 或者文档库。

3. 智能助手帮助销售整理客户信息,帮助 HR 处理面试反馈,帮助研发自动生成技术文档。

通过 DeepSeek 私有化部署 + Dify 知识库共享,企业可以构建一个安全、稳定、可定制的 AI 知识管理系统,实现高效的信息流转。

如果你正在考虑企业级 AI 方案,不妨试试这个组合,绝对让你的 AI 生产力飞跃提升!

<think>好的,我现在需要比较OllamaDifyDeepSeek这三个模型或平台的特点与差异。首先,我得弄清楚每个工具的基本定位和功能。Ollama我记得是一个本地运行大型语言模型的工具,支持多种模型,比如Llama和Mistral,用户可以在自己的电脑上部署,适合需要隐私保护或者离线使用的场景。Dify听起来像是一个AI应用开发平台,可能帮助用户快速构建和部署基于LLM的应用,比如聊天机器人或者自动化流程,它可能提供可视化的界面和API集成DeepSeek则可能是专为特定任务优化的模型,比如中文处理或者推理任务,可能由深度求索公司开发,专注于高效推理和私有化部署。 接下来,我需要确认每个工具的核心功能。Ollama的主要特点应该是本地化部署,支持多模型,命令行操作,适合开发者。Dify作为平台,可能强调低代码/无代码开发,支持多种模型集成,提供工作流管理和数据管理功能,适合企业用户快速搭建AI应用。DeepSeek作为模型,可能专注于高性能推理,支持私有化部署,可能在特定领域如数学或逻辑推理上有优势,适合需要高效处理的企业场景。 然后需要对比它们的差异。OllamaDeepSeek可能都涉及模型部署,但Ollama是工具,而DeepSeek是模型本身。Dify则是更上层的应用开发平台,可能整合了OllamaDeepSeek作为后端模型。应用场景方面,Ollama适合个人开发者或小团队需要本地运行模型的情况,Dify适合企业构建复杂AI应用,DeepSeek适合需要高效推理和特定任务优化的场景。 还要考虑用户群体和技术栈。Ollama需要一定的技术背景,熟悉命令行和模型配置;Dify可能对非技术人员更友好,通过可视化界面操作;DeepSeek可能吸引需要高性能和定制化模型的企业用户。此外,集成方面,Dify可能支持将OllamaDeepSeek作为底层模型接入,提供更全面的解决方案。 最后,结合引用中的信息,引用[1]提到DifyOllamaDeepSeek-R1的集成实现私有化推理,引用[2]则展示了Ollama+DeepSeek+Dify部署测试,说明它们可以协同工作。因此,在比较时需要指出它们的互补性,比如Dify作为平台整合不同模型,Ollama提供本地部署能力,DeepSeek提供高效推理模型。</think>### OllamaDifyDeepSeek的特点与差异对比 #### 1. **定位与核心功能** - **Ollama** 定位为**本地化LLM运行工具**,支持在本地部署和运行开源大语言模型(如Llama 2、Mistral等),通过命令行直接调用模型。核心功能包括: - 本地私有化部署,无需联网[^1] - 支持多模型切换与版本管理 - 轻量化运行,适合开发测试场景 - **Dify** 定位为**AI应用开发平台**,提供可视化界面和API工具链,支持快速构建基于LLM的应用程序(如智能客服、文档分析)。核心功能包括: - 低代码/无代码工作流设计 - 多模型后端支持(可集成OllamaDeepSeek等) - 数据管理、监控和权限控制 - **DeepSeek** 定位为**高性能领域专用模型**(如DeepSeek-R1),专注于数学推理、代码生成等任务优化。核心功能包括: - 高效推理能力,支持长上下文处理 - 私有化部署适配企业需求 - 针对中文场景的强化训练 #### 2. **技术架构差异** | 维度 | Ollama | Dify | DeepSeek | |-------------|----------------------|----------------------|----------------------| | **部署方式** | 本地命令行工具 | 云/本地服务平台 | 私有化模型包 | | **接口类型** | REST API/CLI | Web GUI + API | API/SDK | | **依赖关系** | 依赖本地计算资源 | 可连接多种模型后端 | 独立模型服务 | #### 3. **典型应用场景** - **Ollama**:适合开发者快速测试模型原型,或对数据隐私要求高的离线场景[^2]。 - **Dify**:企业需快速构建AI应用(如知识库问答系统),无需深入编码实现复杂流程。 - **DeepSeek**:需要高效处理数学公式、代码逻辑等专业任务的场景,如教育、金融分析。 #### 4. **协同工作示例** 通过`Dify`平台整合`Ollama`(提供本地模型服务)和`DeepSeek-R1`(提供领域推理能力),可实现: 1. 在Dify中配置Ollama作为模型服务后端 2. 调用DeepSeek-R1处理数学推理任务 3. 通过Dify构建最终用户交互界面 (引用案例:文档多模态分析场景) ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值