当我们评价一个学生时,我们不会只看他的总分,我们还会看他的答题卡,想知道他“哪些题答对了,哪些题答错了,错的题是不会做还是看错了题”。混淆矩阵就是 AI 模型的“答题卡”,它详细地展示了模型预测结果与真实结果的对应关系。
一、什么是混淆矩阵?—— AI 模型的“体检报告”
混淆矩阵是一个 N x N 的方阵(对于二分类问题是 2x2),用于可视化一个分类模型的预测结果。
- 矩阵的行 通常代表真实类别 (Actual Class)。
- 矩阵的列 通常代表模型预测的类别 (Predicted Class)。
通过这个矩阵,我们可以清晰地看到模型对于不同类别的预测情况,尤其能看出模型“混淆”了哪些类别——这也是它名字的由来。
二、混淆矩阵的四大核心象限
对于一个二分类问题(例如“是/否”、“有错/无错”),混淆矩阵包含四个关键部分,它们的名字由两部分构成:
- 第一部分(True/False):表示模型的预测是否正确。
- 第二部分(Positive/Negative):表示模型的预测结果是什么。
- 正例 (Positive): 我们关心的那个类别,例如“有语法错误”、“是欺诈交易”、“患有疾病”。
- 反例 (Negative): 我们不关心的那个类别,例如“语法正确”、“是正常交易”、“身体健康”。
| 真实类别 / 预测类别 |
预测为 正例 (Positive) |
预测为 反例 (Negative) |
| 真实是 正例 (Positive) |
TP (True Positive) |
FN (False Negative) |
| 真实是 反例 (Negative) |
F |

最低0.47元/天 解锁文章
3555

被折叠的 条评论
为什么被折叠?



