一文读懂混淆矩阵:全面诊断你的AI模型

当我们评价一个学生时,我们不会只看他的总分,我们还会看他的答题卡,想知道他“哪些题答对了,哪些题答错了,错的题是不会做还是看错了题”。混淆矩阵就是 AI 模型的“答题卡”,它详细地展示了模型预测结果与真实结果的对应关系。

一、什么是混淆矩阵?—— AI 模型的“体检报告”

混淆矩阵是一个 N x N 的方阵(对于二分类问题是 2x2),用于可视化一个分类模型的预测结果。

  • 矩阵的行 通常代表真实类别 (Actual Class)
  • 矩阵的列 通常代表模型预测的类别 (Predicted Class)

通过这个矩阵,我们可以清晰地看到模型对于不同类别的预测情况,尤其能看出模型“混淆”了哪些类别——这也是它名字的由来。

二、混淆矩阵的四大核心象限

对于一个二分类问题(例如“是/否”、“有错/无错”),混淆矩阵包含四个关键部分,它们的名字由两部分构成:

  1. 第一部分(True/False):表示模型的预测是否正确
  2. 第二部分(Positive/Negative):表示模型的预测结果是什么

  • 正例 (Positive): 我们关心的那个类别,例如“有语法错误”、“是欺诈交易”、“患有疾病”。
  • 反例 (Negative): 我们不关心的那个类别,例如“语法正确”、“是正常交易”、“身体健康”。

真实类别 / 预测类别

预测为 正例 (Positive)

预测为 反例 (Negative)

真实是 正例 (Positive)

TP (True Positive)
真阳性

FN (False Negative)
假阴性

真实是 反例 (Negative)

F

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

996小白的进阶路

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值