大模型LLM | 安装 Dify 并集成 Ollama 和 Xinference

在这里插入图片描述

本文介绍了通过 Docker 安装 Dify,然后集成 Ollama 和 XInference,并利用 Dify 快速搭建一个基于知识库问答的应用。

  • 一、Dify 简介
  • 二、Dify 安装
  • 三、Dify 添加Ollama模型问答
  • 四、Dify 基于知识库问答

一、Dify 简介

Dify 是一款开源的大语言模型(LLM)应用开发平台,旨在帮助开发者快速构建和部署生成式 AI 应用。以下是 Dify 的主要功能和特点 [1]:

  • 融合 Backend as Service 和 LLMOps 理念:Dify 将后端即服务(Backend as Service)和 LLMOps 的理念结合,使开发者能够快速搭建生产级的生成式 AI 应用。

  • 支持多种模型:Dify 支持数百种专有和开源的 LLM 模型,包括 GPT、Mistral、Llama3 等,能够无缝集成来自多家推理提供商和自托管解决方案的模型。

  • 直观的 Prompt 编排界面:Dify 提供了一个直观的 Prompt IDE,用于编写提示、比较模型性能,并向基于聊天的应用程序添加语音转换等附加功能。

  • 高质量的 RAG 引擎:Dify 拥有广泛的 RAG 功能,涵盖从文档摄取到检索的一切,并支持从 PDF、PPT 等常见文档格式中提取文本。

  • 集成 Agent 框架:用户可以基于 LLM 函数调用或 ReAct 定义代理,并为代理添加预构建或自定义工具。Dify 提供了 50 多种内置工具,如 Google 搜索、DELL·E、Stable Diffusion 和 WolframAlpha。

  • 灵活的流程编排:Dify 提供了一个强大的可视化画布,用于构建和测试强大的 AI 工作流,使开发者可以直观地设计和优化他们的 AI 流程。

  • 全面的监控和分析工具:Dify 提供了监控和分析应用日志和性能的工具,开发者可以根据生产数据和注释不断改进提示、数据集和模型。

  • 后端即服务:Dify 的所有功能都附带相应的 API,因此可以轻松将 Dify 集成到您自己的业务逻辑中。

二、Dify 安装

拷贝 Dify Github代码到本地 [2]。

git clone https://github.com/langgenius/dify.git   

进入 dify 源代码的 docker 目录,拷贝环境变量。

cd dify/docker
cp .env.example .env

通过docker compose安装应用。

docker compose up -d   

进入ollama容器,启动qwen2:7b模型。

root@ip-172-31-30-167:~/dify/docker# docker pull ollama/ollama
root@ip-172-31-83-158:~/dify/docker# docker run -d --gpus=all -v ollama:/root/.ollama -p 11434:11434 --name ollama --restart always -e OLLAMA_KEEP_ALIVE=-1 ollama/ollama
root@ip-172-31-83-158:~/dify/docker# docker exec -it ollama bash
root@b094349fc98c:/# ollama run qwen2:7b

三、Dify 添加Ollama模型问答

通过EC2的公网IP地址加上80端口,登录Dify主页,创建管理账户。

通过管理员账号登录。

点击用户-设置。

添加Ollama模型。

添加qwen2:7b模型,因为Ollama是在本机启动,所以设置URL为本地IP地址,端口为114341

qwen2-7b-instruct 利用YARN(一种增强模型长度外推的技术)支持 131,072 tokens上下文,为了保障正常使用和正常输出,建议API限定用户输入为 128,000 ,输出最大 6,144。[3]

点击 工作室-创建空白应用

创建“聊天助手”类型的应用,设置应用名称为Qwen2-7B,点击创建。

为应用设置提示词"你是一个人工智能助手",可以和Qwen2:7B进行对话测试,这里是和大模型本身进行对话,没有引入外部的知识库,后续会引入知识库比较回答的结果。

四、Dify 基于知识库问答

添加Xorbits Inference提供的模型。

添加Text Embedding,即文本嵌入模型,模型的名称为bge-m3,服务器URL为http://172.31.30.167:9997(这里是本机的IP,也可以安装在其他机器,网络和端口可达即可),已经提前在本机上启动了XInference,并且启动了bge-m3模型(参考上一篇文章)。

添加Rerank,即重排模型,模型的名称为bge-reraker-v2-m3,服务器URL为http://172.31.30.167:9997(这里是本机的IP,也可以安装在其他机器,网络和端口可达即可),已经提前在本机上启动了XInference,并且启动了bge-reraker-v2-m3模型(参考上一篇文章)。

查看系统默认设置。

点击“知识库”-“导入已有文本”-“上传文本文件”-选择《促进和规范数据跨境流动规定》的文档。

导入成功后,设置文本检索方式,开启Rerank模型,选择bge-reranker-v2-m3模型,开启默认的Score阈值为0.5(即文本匹配度低于0.5分时,不会召回,不会添加到大模型的上下文中)。

在之前的聊天应用中,添加上面创建的知识库,重新询问大模型相同的问题,可以看到模型结合知识库进行了回答。

可以点击“Prompt日志”,查看日志文件,可以查看系统提示词,将匹配的知识库内容放在了<context></context>中。

点击创建的知识库-点击“召回测试”,可以输入一段文本,用与匹配知识库中的文本,匹配到的文本有一个权重分数,上面设置过的阈值是0.5,即大于这个分数的才会显示为“召回段落”。

文档链接

  • [1] Dify 官网:https://dify.ai/zh
  • [2] Dify Docker Compose 部署:https://docs.dify.ai/v/zh-hans/getting-started/install-self-hosted/docker-compose
  • [3] Qwen Token限制:https://help.aliyun.com/zh/dashscope/developer-reference/tongyi-qianwen-7b-14b-72b-api-detailes

如何学习大模型?

学习AI大模型是一个系统的过程,需要从基础开始,逐步深入到更高级的技术。

这里给大家精心整理了一份全面的AI大模型学习资源,包括:AI大模型全套学习路线图(从入门到实战)、精品AI大模型学习书籍手册、视频教程、实战学习、面试题等,资料免费分享!

1. 成长路线图&学习规划

要学习一门新的技术,作为新手一定要先学习成长路线图方向不对,努力白费

这里,我们为新手和想要进一步提升的专业人士准备了一份详细的学习成长路线图和规划。可以说是最科学最系统的学习成长路线。
在这里插入图片描述

2. 大模型经典PDF书籍

书籍和学习文档资料是学习大模型过程中必不可少的,我们精选了一系列深入探讨大模型技术的书籍和学习文档,它们由领域内的顶尖专家撰写,内容全面、深入、详尽,为你学习大模型提供坚实的理论基础(书籍含电子版PDF)

在这里插入图片描述

3. 大模型视频教程

对于很多自学或者没有基础的同学来说,书籍这些纯文字类的学习教材会觉得比较晦涩难以理解,因此,我们提供了丰富的大模型视频教程,以动态、形象的方式展示技术概念,帮助你更快、更轻松地掌握核心知识

在这里插入图片描述

4. 大模型项目实战

学以致用 ,当你的理论知识积累到一定程度,就需要通过项目实战,在实际操作中检验和巩固你所学到的知识,同时为你找工作和职业发展打下坚实的基础。

在这里插入图片描述

5. 大模型面试题

面试不仅是技术的较量,更需要充分的准备。

在你已经掌握了大模型技术之后,就需要开始准备面试,我们将提供精心整理的大模型面试题库,涵盖当前面试中可能遇到的各种技术问题,让你在面试中游刃有余。

在这里插入图片描述

全套的AI大模型学习资源已经整理打包,有需要的小伙伴可以微信扫描下方CSDN官方认证二维码,免费领取【保证100%免费

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值