“ PyTorch就是工具,而Transformer就是理论;而理论指导工具。”
我们都知道大模型的本质是一个神经网络模型,因此我们学习大模型就是在学习神经网络模型;但了解了很多关于神经网络的理论,但大部分人对神经网络都没有一个清晰的认识,也就是说神经网络到底是什么?它长什么样?
事实上所谓的神经网络本质上就是一个数学模型,里面涉及大量的数学运算;只不过其运算的主要数据类型是——向量,具体表现为多维矩阵。
一、PyTorch和Transformer
在神经网络的学习研究过程中,有两个东西是绕不过去的;一个是PyTorch神经网络开发框架,另一个就是Transformer神经网络架构。它们两者之间的关系就类似于编程语言和算法之间的关系,PyTorch就是编程语言;而Transformer就是算法。
Transformer即可以通过PyTorch框架实现,也可以通过其它框架实现,比如Tensorflow;PyTorch也可以实现其它的网络架构模型,比如CNN和RNN等。
因此,PyTorch也被称为科学计算框架,原因就在于神经网络的本质就是数学模型,而数学模型就是不停地做科学计算。
如下就是一个简单的使用PyTorch实现的简单神经网络模型,从代码中可以看出,一个神经网络主要由两部分组成,init初始化方法和forward前向传播方法。
import torch
import torch.nn as nn
# 定义简单的神经网络架构
class SimpleNeuralNetwork(nn.Module):
def __init__(self):
super(SimpleNeuralNetwork, self).__init__()
self.layer1 = nn.Linear(10, 5) # 输入层10维,输出5维
self.layer2 = nn.Linear(5, 2) # 隐藏层5维,输出2维
def forward(self, x):
x = torch.relu(self.layer1(x)) # 使用ReLU激活函数
x = self.layer2(x) # 输出层不需要激活函数
return x
# 创建模型实例并输出网络结构
model = SimpleNeuralNetwork()
print(model)
在init方法中主要用来初始化一些参数,以及神经网络的网络层;比如Linear就是一个线性神经网络层——也叫做全连接层。
而forward方法就用来做一些科学计算,也就是神经网络模型中的传播算法等。比如上面代码中,就是对目标数据x先使用layer1网络层做一次线性变换,然后再使用relu函数进行激活。之后在使用layer2线性网络做一次线性变换,最终返回变换之后x的值。
在神经网络中,除了输入层与输出层之外;任何一层网络的输入都来自上层网络的输出;而任何一层网络的输出就是下层网络的输入。
所以,神经网络的核心就是:“将现实问题转化为数学问题,通过求解数学问题,从而解决现实问题”。
但是,为什么多维矩阵在经过多层神经网络的多次变换之后,就能够“理解”自然语言,“看懂”图片和视频;这个就是Transformer等神经网络架构需要解决的问题了。
从外面来看,神经网络就是一个黑盒,我们输入一些数据,然后神经网络这个黑盒就能根据某种规则给我们生成一些新的数据;但我们并不知道神经网络中到底发生了什么。
但把这个黑盒打开之后就可以看到,Transformer这个黑盒是由Encoder-Decoder编码器和解码器组成的;而编码器和解码器又由更小的组件组成——比如多头注意力,残差层等组成。
如上图所示就是Transformer论文提供的经典架构图;详细说明了Transformer的编码器和解码器是怎么构成的。
因此,PyTorch和Transformer的关系就是工具和理论的关系;没了工具就无法制造出神经网络,而没有理论神经网络就无法解决实际问题;这里PyTorch就是制造神经网络的工具;而Transformer就是让神经网络能够正常运行的理论。
二、如何系统学习掌握AI大模型?
AI大模型作为人工智能领域的重要技术突破,正成为推动各行各业创新和转型的关键力量。抓住AI大模型的风口,掌握AI大模型的知识和技能将变得越来越重要。
学习AI大模型是一个系统的过程,需要从基础开始,逐步深入到更高级的技术。
这里给大家精心整理了一份
全面的AI大模型学习资源
,包括:AI大模型全套学习路线图(从入门到实战)、精品AI大模型学习书籍手册、视频教程、实战学习、面试题等,资料免费分享
!
1. 成长路线图&学习规划
要学习一门新的技术,作为新手一定要先学习成长路线图,方向不对,努力白费。
这里,我们为新手和想要进一步提升的专业人士准备了一份详细的学习成长路线图和规划。可以说是最科学最系统的学习成长路线。
2. 大模型经典PDF书籍
书籍和学习文档资料是学习大模型过程中必不可少的,我们精选了一系列深入探讨大模型技术的书籍和学习文档,它们由领域内的顶尖专家撰写,内容全面、深入、详尽,为你学习大模型提供坚实的理论基础。(书籍含电子版PDF)
3. 大模型视频教程
对于很多自学或者没有基础的同学来说,书籍这些纯文字类的学习教材会觉得比较晦涩难以理解,因此,我们提供了丰富的大模型视频教程,以动态、形象的方式展示技术概念,帮助你更快、更轻松地掌握核心知识。
4. 2024行业报告
行业分析主要包括对不同行业的现状、趋势、问题、机会等进行系统地调研和评估,以了解哪些行业更适合引入大模型的技术和应用,以及在哪些方面可以发挥大模型的优势。
5. 大模型项目实战
学以致用 ,当你的理论知识积累到一定程度,就需要通过项目实战,在实际操作中检验和巩固你所学到的知识,同时为你找工作和职业发展打下坚实的基础。
6. 大模型面试题
面试不仅是技术的较量,更需要充分的准备。
在你已经掌握了大模型技术之后,就需要开始准备面试,我们将提供精心整理的大模型面试题库,涵盖当前面试中可能遇到的各种技术问题,让你在面试中游刃有余。
全套的AI大模型学习资源已经整理打包,有需要的小伙伴可以
微信扫描下方CSDN官方认证二维码
,免费领取【保证100%免费
】