三、案例:银行流水分析工具的三种实现
流水分析在信贷风控领域有较为重要的作用,尤其是在当前经济下行背景下,传统基于税票数据的分析可能并不能很好的反映企业的经营稳定性。换句话说,发票和纳税数据的正常,并不能代表企业的现金流是健康的。
但不同银行的流水格式有所区别,且不同类型的数据清洗有一定的工程量。因此小的金融机构往往会选择直接采购第三方的流水解析服务,这种外采(尤其是SaaS化的外采)在信息安全上存在潜在隐患。此外,当前息差空间不断收窄的背景下,合理的压降风控成本也是重要的话题。在当前LLM加持下的agent下已经初步具备了低成本、高扩展的新方法。
以下就作者业务实操中实践的一个三阶段的流水分析实现为大家做个示例说明:
3.1 第一代:RPA 流水线(效率优先)
文件上传 → 模板匹配 → 固定规则提取 → 报表生成。
本地运行页面,根据硬编码规则进行单家银行流水解析
使用本地部署的LLM根据预设风控策略生成的分析报告
适用于场景单一银行标准化流水分析。
3.2 第二代:Workflow 引擎(灵活扩展)
多格式识别 → 规则库匹配 → 动态清洗 → 智能校验,内置多家银行的解析模板,支持字段映射自助配置。
3.3 第三代:Agent 架构(动态建模)
环境感知 → LLM 推理 → 动态建模 → 自优化系统,适用未知的流水格式。
四、写在最后
有许多框架能让 Agent 系统更易于实现,包括LangChain的LangGraph、亚马逊云科技的Amazon Bedrock等,这些框架简化了调用LLM、定义和解析工具以及串联调用等标准底层任务,让起步变得容易。
但框架本身也会增加额外的抽象层,可能会掩盖底层的提示和响应,加大调试难度。更需要注意的是,在简单设置就能满足需求的情况下,它们也容易诱使新手开发增加复杂性,舍本逐末的追求大而全(血泪史)。
MVP的开发阶段,建议还是直接调用LLM的API,很多模式也只需几行代码就能实现。如果使用框架,务必理解底层代码。最后附上官方提供的两个代码示例供大家参考,后续有机会再给大家做拆解展示。
常见工作流和智能体的“最小实现”示例:
https://github.com/anthropics/anthropic-cookbook/tree/main/patterns/agents
“Agent 使用计算机” Demo 代码:
https://github.com/anthropics/anthropic-quickstarts/tree/main/computer-use-demo
其实示例并不重要,关键你自己上手去试,才能收获认知。
如何系统学习掌握AI大模型?
AI大模型作为人工智能领域的重要技术突破,正成为推动各行各业创新和转型的关键力量。抓住AI大模型的风口,掌握AI大模型的知识和技能将变得越来越重要。
学习AI大模型是一个系统的过程,需要从基础开始,逐步深入到更高级的技术。
这里给大家精心整理了一份
全面的AI大模型学习资源
,包括:AI大模型全套学习路线图(从入门到实战)、精品AI大模型学习书籍手册、视频教程、实战学习、面试题等,资料免费分享
!
1. 成长路线图&学习规划
要学习一门新的技术,作为新手一定要先学习成长路线图,方向不对,努力白费。
这里,我们为新手和想要进一步提升的专业人士准备了一份详细的学习成长路线图和规划。可以说是最科学最系统的学习成长路线。
2. 大模型经典PDF书籍
书籍和学习文档资料是学习大模型过程中必不可少的,我们精选了一系列深入探讨大模型技术的书籍和学习文档,它们由领域内的顶尖专家撰写,内容全面、深入、详尽,为你学习大模型提供坚实的理论基础。(书籍含电子版PDF)
3. 大模型视频教程
对于很多自学或者没有基础的同学来说,书籍这些纯文字类的学习教材会觉得比较晦涩难以理解,因此,我们提供了丰富的大模型视频教程,以动态、形象的方式展示技术概念,帮助你更快、更轻松地掌握核心知识。
4. 2024行业报告
行业分析主要包括对不同行业的现状、趋势、问题、机会等进行系统地调研和评估,以了解哪些行业更适合引入大模型的技术和应用,以及在哪些方面可以发挥大模型的优势。
5. 大模型项目实战
学以致用 ,当你的理论知识积累到一定程度,就需要通过项目实战,在实际操作中检验和巩固你所学到的知识,同时为你找工作和职业发展打下坚实的基础。
6. 大模型面试题
面试不仅是技术的较量,更需要充分的准备。
在你已经掌握了大模型技术之后,就需要开始准备面试,我们将提供精心整理的大模型面试题库,涵盖当前面试中可能遇到的各种技术问题,让你在面试中游刃有余。
全套的AI大模型学习资源已经整理打包,有需要的小伙伴可以
微信扫描下方CSDN官方认证二维码
,免费领取【保证100%免费
】