心音信号(PCG)预处理转换为特征向量不使用二维图像

#预处理方式为使用动态MFCC并采用滑动窗口对2016心音挑战赛数据进行分割,使用过采样平衡数据
import os
import numpy as np
import librosa
from sklearn.preprocessing import MinMaxScaler
from scipy.signal import butter, filtfilt
from imblearn.over_sampling import KMeansSMOTE
from sklearn.cluster import KMeans

# 文件夹路径(更换成自己的)
input_folders = ['你自己的路径']
output_file = r'..\out_put\data.npy'
os.makedirs(os.path.dirname(output_file), exist_ok=True)

# 滑动窗口函数
def sliding_window(signal, window_size, step):
    return [signal[i:i + window_size] for i in range(0, len(signal) - window_size + 1, step)]

# 巴特沃斯带通滤波器
def butter_bandpass(lowcut, highcut, fs, order=2):
    nyquist = 0.5 * fs
    low = lowcut / nyquist
    high = highcut / nyquist
    b, a = butter(order, [low, high], btype='band')
    return b, a

def bandpass_filter(data, lowcut, highcut, fs, order=2):
    b, a = butter_bandpass(lowcut, highcut, fs, order
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值