0、引文
目前,心血管疾病是我国国民面临的主要健康威胁之一,其患病率不断上升,发病率也呈现年轻化趋势。在心血管疾病早期及时进行干预是最有效的治疗手段,心音听诊是诊断心血管疾病的关键方法之一,能够作为重要的诊断参考依据。然而,目前心音听诊主要依赖于专业医生进行实时听诊,这导致许多人未能及时发现自身的心血管疾病问题,错过了治疗的最佳时机。医生对于心血管疾病的判断大都基于自身经验,存在一定的主观性。为解决这些问题,本文研发一套基于机器学习的心音检测系统,该系统利用研发的心音采集装置能够采集并保存微弱的心音信号,构建基于机器学习的心音分类方法对采集的心音信号进行检测,为用户提供心脏健康评估和预警。
1、心音采集装置
使用ESP32开发板,电容式驻极体麦克风,放大模块、听诊头等硬件设施,形成电子听诊器的硬件装置。此装置能够采集人体实测心音数据,通过蓝牙传输,将心音数据实时传输至蓝牙耳机,并将数据进行保存。
2、心音分类方法
首先优化心音数据的预处理流程,包括进行小波去噪、滤波、规划化等预处理,去除噪声干扰,并使其时长、采样频率、强度等可能影响心音分类结果的因素保持一致;然后,改进MFCC的特征提取,确保提取详细的心音数据特征;最后构建分类模型,并利用提取的特征对模型训练,得到心音分类模型,并对其进行评估。
3、心音检测系统的搭建
在前面基础上将心音采集装置与心音分类模型相结合,完成心音检测系统的搭建,实现对心音采集装置采集的实测心音数据处理和分类,为用户提供心脏健康情况的预测。心音采集装置作为下位机,包括心音采集装置的硬件和软件,上位机的软件将作为心音数据的处理中心,负责接收下位机(心音采集设备)发送的心音数据,并通过调用前文训练好的心音分类模型对接收到的实测心音数据进行高效、准确的检测工作。
4、展示效果
(1)心音采集装置实物图
基于各模块的设计,本文研发了一个能精准采集微弱的心音信号、体积小、成本低、心音数据保存便捷和非接触式听诊的心音采集装置。此装置内部装备了高灵敏度的传感器,能够精准捕捉心脏跳动的心音数据,配备存储模块与蓝牙模块,可以实现心音数据的存储与非接触式听诊功能。
(2)模型训练结果
通过MFCC提取心音数据的特征,送入CNN/CNN-LSTM神经网络模型中训练,最终结果达到92%左右的准确率。
(3)心音检测
通过可视化交互界面,用户只需要两步即可完成实测心音数据的检测,方便用户的操作与观察
第一步:点击“选择文件”按钮,选择要检测的心音数据文件所在的路径。选定心音文件后,文件路径会显示在“选择文件”按钮的右侧。如果路径选择不正确,可以重新点击“选择文件”按钮并重新选择心音数据。路径选择成功后,波形图显示模块将显示所选心音数据的波形图。
第二步:点击“开始检测”按钮。点击“开始检测”按钮后,系统会读取先前选择的心音数据,并对其进行预处理和特征提取,生成特征向量组。然后,系统会调用之前训练好的改进的CNN-LSTM分类模型,将特征向量组输入分类模型进行分类。最后,通过心音分类函数对分类结果进行综合分析,给出预测结果,并在检测结果显示区域中显示,完成心音数据的检测。