【高等数学】函数连续、可导、可微,洛必达法则使用条件、一阶可导、一阶连续可导、二阶可导、二阶连续可导

目录

一.一元函数连续、可导、可微之间的关系

二.洛必达的使用条件

三.洛必达使用要注意的地方

1.等式右边极限存在

2.每导一步注意检查是否满足0/0,或∞/∞

3.求导时注意函数怎么求导更简化

四. 一阶可导、一阶连续可导、二阶可导、二阶连续可导

已知一阶可导   f'(x),可得:

已知一阶连续可导,可得:

已知二阶可导   f''(x),可得:

已知二阶连续可导,可得:

经典例题:


一.一元函数连续、可导、可微之间的关系

                    

注意:以上的关系只针对于一元函数

二.洛必达的使用条件

三.洛必达使用要注意的地方

1.等式右边极限存在

2.每导一步注意检查是否满足0/0,或∞/∞

3.求导时注意函数怎么求导更简化


四. 一阶可导、一阶连续可导、二阶可导、二阶连续可导

分段函数是指定义域被分成若干区间,在不同区间上由不同的表达式给出的函数。对于分段函数在其分界点处的性质分析,主要关注的是极限、连续性和可性。 ### 极限 为了确定个分段函数$f(x)$在某分界点$c$处是否有极限,需要检查当$x$趋近于$c$时左右两侧的极限是否相等。即计算$\lim_{{x \to c^-}} f(x)$ 和 $\lim_{{x \to c^+}} f(x)$ 是否存在并且相同。若两者都存在且等于$L$,则可以说$\lim_{{x \to c}} f(x)=L$。 ### 连续性 如果分段函数$f(x)$满足以下条件,则认为它在分界点$c$处是连续的: - 左侧极限和右侧极限均存在; - 左右极限值相等; - 函数在该点有定义,并且这个定义值等于左右极限的共同值; 换句话说,要使分段函数在分界点$c$处连续,必须保证$\lim_{{x \to c^-}} f(x) = \lim_{{x \to c^+}} f(x) = f(c)$。 ### 可性 分段函数要在分界点$c$处可,不仅要求在此点连续,还要求左侧数和右侧数也存在并相等。这意味着不仅要验证$\frac{d}{dx}f(x)|_{c^-}$ 和 $\frac{d}{dx}f(x)|_{c^+}$ 存在,而且这两个值还要相等。只有这样才可以说分段函数在$c$点可。 ### 求解方法 针对以上三种情况的具体求法如下: #### 对于极限的问题, 可以通过直接代入或者利用洛必达法则(适用于不定型的情况)、夹逼定理等方式来解决。 #### 关于连续性的检验, 先分别求出左极限和右极限,再比较它们与$f(c)$的关系即可得出结论。 #### 至于可性的判断, 首先要确保函数在这个位置是连续的,接着尝试找出左边和右边各自的数值,看二者是否致。
评论 10
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值