自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(21)
  • 收藏
  • 关注

原创 python股票技术分析库Ta-Lib安装日记(windows 下 talib 安装)

python 股票技术分析库 Ta-lib(talib) 的安装方法

2022-06-10 21:16:27 8806 4

原创 记录安装torchtext会自动更新pytorch版本导致gpu加速失效问题

安装torchtext导致torch版本自动更新,无法用gpu进行加速

2022-04-29 10:21:24 4112 1

转载 方差分析ANOVA:理论、推导与R语言实现

typora-root-url: figures_ANOVA方差分析1 概要方差分析(Analysis of variance, ANOVA) 主要研究分类变量作为自变量时,对因变量的影响是否是显著的。方差分析的方法是由20世纪的统计学家Ronald Aylmer Fisher在1918年到1925年之间提出并陆续完善起来的,该方法刚开始是用于解决田间实验的数据分析问题,因此,方差分析的学习是和实验设计、实验数据的分析密不可分的。实验设计和方差分析都有自己相应的语言。因此,在这里我们通过一个焦虑.

2021-11-28 00:22:59 3416

转载 常见概率分布与假设检验

文章目录1 一般随机变量1.1 随机变量的两种类型1.2 离散型随机变量1.3 连续型随机变量2 常见分布2.1 离散型分布2.1.1 二项分布(Binomial distribution)2.1.2 泊松分布(Poisson distribution)2.1.3 二项分布,泊松分布,正态分布的关系2.1.4 其他离散型随机分布几何分布(Geometric distribution)负二项分布(Negative binomial distribution)超几何分布(Hypergeometric Distr

2021-11-27 23:30:34 1393

转载 数理统计与描述性统计

文章目录一、数理统计概念1.基本概念释义2.统计量与抽样3.常用的统计量二、描述性统计1.数据集中趋势的度量2. python实现3.数据离散趋势的度量4.python实现5. 分布特征6.偏度与峰度7. 公式与python实现一、数理统计概念1.基本概念释义定义:在数理统计中,称研究对象的全体为总体,通常用一个随机变量表示总体。组成总体的每个基本单元叫个体。从总体 XXX 中随机抽取一部分个体 X1,X2,...,XnX_1,X_2,...,X_nX1​,X2​,...,Xn​ ,称 X1,X

2021-11-27 21:56:00 569

转载 随机事件与随机变量

一、随机事件1.基本概念释义现实生活中,一个动作或一件事情,在一定条件下,所得的结果不能预先完全确定,而只能确定是多种可能结果中的一种,称这种现象为随机现象。​ 例如,抛掷一枚硬币,其结果有可能是出现正面,也有可能是出现反面;掷骰子游戏中,出现的数字可能是1,2,3,4,5,6其中的任意一个。以上这些现象都是随机现象。使随机现象得以实现和对它观察的全过程称为随机试验,记为 EEE。随机实验满足以下三个条件:可以在相同条件下重复进行;结果有多种可能性,并且所有可能结果事先已知;作

2021-11-27 15:37:25 1972

原创 记录python集合set常见操作

文章目录1. 集合set的定义2. 创建集合 set([iterable])3. 集合的特性3.1 集合没有索引(也就没法切片,因为本身集合是无序的)3.2 集合元素不能重复3.3 集合不能拼接4. 集合的常用方法4.1 增add()update()4.2 删remove()pop()4.3 交集: inintersection 或者 &4.3.1 inintersection4.3.2 inintersection_update4.3.3 &4.3.3 &=4.4 并集:unio

2021-10-20 19:43:32 736

原创 记录python字典dictionary常见操作

文章目录1. 创建字典1.1 dict(**kwarg)1.2 dict(mapping,**kwarg)1.3 dict(iterable,**kwarg)1.4 fromkeys(iterable[,value])2. 字典常用操作list(d)、tuple(d)、set(d)len(d)d[key]d[key] = valuedel d[key]key in diter(d)clear()copy()get(key[, default ])items(),keys(),values()pop(key

2021-10-20 18:29:42 396

原创 记录python字符串常见操作、字符串方法

文章目录1、序列通用操作2、字符串方法1、序列通用操作因为字符串也是序列的一种,所以序列的通用操作也都适用于字符串。我这里列出了所有序列的通用操作。包括切片、查询一些信息等。2、字符串方法看到一位博主总结的挺好,就不自己总结了,直接贴上链接来记录一下。python字符串常用方法大全...

2021-10-20 10:55:41 133

原创 记录python列表list常见操作:增删改查

文章目录1. 序列(Sequence)常见通用操作(1) in, not in(2) +(3) *(4) s[i]、s[i:j]、s[i:j:k](5) len(6) min(s), max(s)(7) index(8) count2. 列表常见操作2.1 增操作appendinsertextend通过切片s[i:i] = iterable object 在任意index i 插入元素、拼接可迭代对象。2.2 删操作del s[i:j]s.clear()s.pop() or s. pop(i)s.rem

2021-10-20 10:27:44 443

原创 python常见内置函数详解:作用、实例

文章目录1. abs()1. abs()作用:返回x的绝对值x :可以是整数、浮点数、复数,若是复数则返回其模长。abs(-2),abs(-2.3),abs(-3+4j)返回:2, 2.3, 5.0

2021-10-16 23:00:09 2773

原创 不同变量编码的方法

文章目录1 为什么需要对变量进行编码?2 数据类型有哪几类?2.1 不同数据类型举例2.1.1 连续-数值型-可排序2.1.2 离散-数值型-可排序2.1.3 离散-数值型-不可排序2.1.4 离散-非数值型-可排序2.1.5 离散-非数值型-不可排序3. 如何对不同类型的变量进行编码?3.1 连续-数值型-可排序3.2 离散-数值型-可排序3.3 离散-数值型-不可排序3.4 离散-非数值型-可排序3.5 离散-非数值型-不可排序1 为什么需要对变量进行编码?对于机器学习模型来说,预测模型只能对数值类

2021-09-20 18:33:50 1039

原创 机器学习方法三要素理解:模型、策略、算法

文章目录1. 统计学习方法是什么?1.1 举个例子说明1.2 为什么要假设数据是独立同分布的?2. 统计学习方法的三要素:模型、策略和算法2.1 模型2.1.1 常见的回归模型:2.1.2常见的二分类(一般只能用于二分类)模型:2.1.3常见的多分类(也可用于二分类)模型:2.2 策略2.2.1 损失函数、期望风险函数、经验风险函数、结构风险函数2.2.2常见的损失函数分类任务常用损失函数回归任务常用损失函数2.3 算法3. 模型的评估与选择3.1 测试集:衡量最终模型的泛化能力3.2 验证集:模型调参,得

2021-09-08 16:08:47 7505 1

原创 记录下导入keras时的问题:tensorflow.python.eager和module ‘tensorflow.compat.v2‘ has no attribute ‘__internal__‘

1、tf版本要与keras版本对应,不然导入会出现错误import keras cannot import name ‘context’ from ‘tensorflow.python.eager’ (unknown location)具体对应版本看这tf与keras对应版本查询以及下载对应版本地址2、就算版本对应了,import keras 还是报错module ‘tensorflow.compat.v2‘ has no attribute ‘internal‘搜索了一下,用 from tens

2021-08-05 11:31:22 1962

原创 凸二次规划(convex quadratic programming)问题

凸函数: 和高数上不一样,不是看形状,而是看定义f[(x1+x2)/2]<=[f(x1)+f(x2)]/2f[(x1+x2) /2] <=[f(x1)+f(x2)]/2f[(x1+x2)/2]<=[f(x1)+f(x2)]/2 f(x)=x直线也是凸函数,但不严格严格凸函数f[(x1+x2)/2]<[f(x1)+f(x2)]/2f[(x1+x2) /2] < [f(x1)+f(x2)]/2f[(x1+x2)/2]<[f(x1)+f(x2)]/2 如 f(x)=x

2021-07-20 15:13:22 10188

原创 函数连续、可导、可微、连续可微

文章目录1、函数f(x)f(x)f(x)在点x0x_0x0​极限存在的充要条件2、函数f(x)f(x)f(x)在点x0x_0x0​连续的充要条件3、函数f(x)f(x)f(x)在点x0x_0x0​可微3.1一元函数可导的充要条件3.2多元函数偏导的定义4、函数f(x)f(x)f(x)在点x0x_0x0​连续可微首先声明一下本篇博客的函数为n元函数,即x ∈Rn∈R^{n}∈Rn。1、函数f(x)f(x)f(x)在点x0x_0x0​极限存在的充要条件f(x)在点x0x_0x0​存在极限并不要求f(x)

2021-07-20 12:27:09 10548 2

原创 sklearn.linear_model.Perceptron感知机模型参数、属性解释及实操

文章目录1. sklearn.linear_model.Perceptron参数解释2. sklearn.linear_model.Perceptron属性解释3. sklearn.linear_model.Perceptron实战关于感知机算法的原理,数学推导,python手动实现可以查看本人的这篇文章1. sklearn.linear_model.Perceptron参数解释用于创建感知机模型时传递的参数。参数名称参数取值参数解释penalty默认=None,即不加惩罚项

2021-07-14 18:16:22 7720 6

原创 机器学习之决策树:原理及ID3算法手动实现,sklearn.tree.DecisionTreeClassifier参数详解

决策树简介决策树是一种基本的分类与回归方法,这里主要讨论用于分类的决策树。决策树模型是一种树形结构,在分类问题中表示基于特征对实例进行分类的过程。决策树的学习主要包括3个步骤:特征选择,决策树的生成,决策树的剪枝。决策树模型与学习决策树模型分类决策树是一种描述对实例分类的属性结构,决策树由节点和有向边组成,节点分为叶节点(leaf node)和内部节点(internal node),内部节点表示一个特征(根节点也是一个内部节点),而叶节点表示一个类。如图:对于一棵训练好的决策树,输入一个用于预测

2020-09-04 22:34:06 2873

原创 机器学习之朴素贝叶斯法(Naive Bayes)

1.朴素贝叶斯算法简介朴素贝叶斯法是基于贝叶斯定理与特征条件独立假设的分类方法,是一种典型的生成方法,即学习到了输入与输出的联合概率分布P(X,Y)P(X,Y)P(X,Y),通过这个联合概率布P(X,Y)P(X,Y)P(X,Y)结合P(X)P(X)P(X),就能求出在给定实例xxx下分类为某类ckc_kck​的概率P(Y=ck∣X=x)=P(X=x,Y=ck)/P(X=x)P(Y=c_k|X=x)=P(X=x, Y=c_k)/P(X=x)P(Y=ck​∣X=x)=P(X=x,Y=ck​)/P(X=x)

2020-08-24 23:54:24 928

原创 k-nearest neighbor(kNN,k近邻算法)理论与实操及KNeighborsClassifier参数详解

1. k-NN算法简介k近邻法是基本且简单的分类与回归方法,利用数据集对特征向量空间进行划分,可以进行多分类。如下图:三角形与矩形分别代表两类数据,标签已知。现要对新输入的为分类点(绿色)进行分类,k-NN的做法是寻找与该绿点相邻最近的k个点(k-NN算法的k的含义,图中的距离为欧式距离),然后通过多数表决的方式把绿点划分到这k个最近点出现频数最高的类。例如如果k取3,则绿点最近的3个点中频数最高为三角形类,所以归为三角形类;若k取5,则距离绿点最近的5个点中频数最高为矩形类,所以归绿点为矩形类。1.

2020-08-22 22:19:18 10294 1

原创 感知机(perceptron):原理、python实现及sklearn.linear_model.Perceptron参数详解

机器学习之感知机(perceptron)1.感知机模型介绍感知机是一个二分类的线性分类模型,二分类是指输出YYY的分类只有两个值,取+1和-1,线性分类是指模型将训练数据集用一个线性超平面(如果特征空间XXX⊆\sube⊆RnR^nRn,那么该线性超平面就是n-1维)。感知机模型属于判别模型,即通过输入的样本直接学习到fff(xxx),而没有学习到XXX 与YYY的联合分布函数FFF(XXX,YYY)感知机模型的形式:f(x)=sign(w⋅x+b)f(x) = sign(w \centerdot

2020-08-19 12:23:16 7810 4

空空如也

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除